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It is crucial to identify methods to detect debris due to a new tendency that is 
emerging in LEO orbits, which is threatening the functionality of satellites and 
interplanetary missions. This research solves this problem using an improved 
YOLO-V8 model that enables the detection of space debris with higher precision 
while using adaptive dynamic learning approaches. It was critical for our model 
to be able to identify and categorize as many kinds of objects as possible, and 
our database currently contains 11 object classes, including space debris and 
satellites. To specifically detect small and moving objects, we utilized the YOLO-
V8 model, tailoring the train options to the unique object detections in this 
class. For the training of our model, we used a large quantity of data in addition 
to the images from these 11 classes and used SGD as our optimizer with the 
learning rate of 0.25 and individual weight decay parameters. Additionally, we 
utilized blur and grayscale transforms to enhance the model through data 
augmentation. By comparing the obtained results, we can observe enhanced 
detection accuracy in each class separately, as well as a general boost in 
prediction and recall. Due to the cross-entropy function's flexibility, the model 
was able to perform well on various object sizes and speeds in an orbital 
context, making detection consistent. A lot of fine tuning was required in the 
training parameters in order to get the desired or even better results devoid of 
false positive detection. This paper describes how YOLO-V8 with adaptive 
training achieved outstanding results for object and debris detection in low 
Earth orbit (LEO) to improve space usage safety and define better approaches to 
space debris management. 
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1. Introduction 

One of the most significant threats to space activities is space debris with low earth orbit density, posing risks to both 
manned and unmanned space vehicles. Orbital debris, such as dead satellites, launch vehicles, or parts from previous 
collisions, is a current threat to spacecraft and working satellites. These collisions may cause more particles to form, 
compounding the situation in a chain-like manner. Given the current trend in the number of space missions and satellite 
launches, weather for communication, research, mapping, or military purposes, there is no doubt that space debris 
detection and management is the order of the day [1]. In assessing collision threats, it enables correct identification of the 
threats and the safety of space assets [2].  
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Up until now, there were mainly two ways to track space debris: radar surveillance and optical systems. Radar systems 
are capable of covering large objects and providing real-time tracking information, but their accuracy in determining the 
size of small particles is often poor, and other signals can easily confuse them [3]. Optical systems are capable of providing 
greater resolution compared to radio systems, but they suffer from climatic conditions and must be 'pointed'. Despite this, 
both methods lack the comprehensive and real-time information on debris that is essential for debris management. Thus, 
the following limitations underscore the need to look for new ways of increasing the rates of detection, which would also be 
accurate and reliable [4]. 

Machine learning and deep learning approaches have provided new ways of identifying space debris. Real-time object 
detection is the major strength of YOLO (You Only Look Once), which is one of the most famous object detection 
frameworks [5]. The YOLO architecture also allows for the prediction of several bounding boxes and class probabilities at 
the same time, making it ideal for real-time and rapid detection. The algorithm's general success in numerous domains 
may also benefit the use of YOLO in space debris identification, although the approach has not received extensive research 
[6].  

Recent years have seen some papers address the issue of modifying YOLO for specific detection purposes. These 
studies have demonstrated that enhancing YOLO models with enhanced training approaches and augmented data 
methods can improve detection efficiency [7]. However, applying YOLO to the actual environment by detecting LEO debris 
presents some challenges, such as object size variation, object movement, and light conditions [1].  

Therefore, our research aims to address these issues by enhancing the YOLO-V8 model through the integration of dynamic 
training methods appropriate for space debris identification. We will train the initial model, YOLO-V8, using a diverse 
selection of debris and satellites. We aim to simulate the complexity of space objects' characteristics by using different 
sizes, shapes, and motion velocities in this dataset [5]. We will incorporate dynamic training strategies that would allow it 
to increase its overall detection rates [8].  

      This research employs an approach consisting of multiple components. First, a state-of-the-art survey of the current 
approaches to detecting space debris and their drawbacks forms the background for our approach [6]. Subsequently, in an 
attempt to improve detection, we fine-tune a YOLO-V8 model using a dataset complemented with images of space debris 
and satellites. The training process herein involves using stochastic gradient descent (SGD) with a learning rate set at 0.01 
and specific weight decay parameters in order to further optimize the models' architectures. We also incorporate data 
augmentation, such as blur and grayscale, to enhance the model's capacity to identify effective strategies under various 
conditions [9]. 

      The research steps include a formal evaluation of the trained YOLO-V8 model, followed by testing on a set of debris 
images [10]. We can use precision and recall rate as evaluation standards to assess the model's effectiveness in identifying 
different types of space debris. By analysing the results and utilizing the collected data, we aim to improve the model and 
expand its functions. This study aims to evaluate different dynamic training techniques, hence the impact on the detection 
accuracy [11].  

      This study's system hierarchy includes a literature review of prior methods and the YOLO-V8 model training process. 
There are further phases, such as assessing the model and outcomes and further developing the detection capabilities. As 
a result, we designed each stage of the research with the goal of successively refining the existing methodology to boost 
searches for space debris [11]. Therefore, the primary goals of the current study are to improve the YOLO-V8 approach 
through the implementation of an adaptive dynamic training strategy, aiming to increase the detector's effectiveness in 
identifying space debris and to optimize the model's performance in a variety of orbital conditions. Therefore, in this 
research study, those gaps have been articulated, and more to the point, an enhanced and efficient approach using ML 
techniques has been proposed to improve on space debris control. 

      Thus, the work involves using dynamic training methods to create an architecture for identifying space debris based on 
Yolo-V8 that is much more effective than the previous methods, especially in identifying the ‘‘slow’’ and ‘‘crowded’’ 
particles. The analysed results may help to improve space security and establish better debris removal strategies in LEO.  

2. Related Work 
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Some of the more significant threats are space debris in LEO since the number of satellites and space missions has 
increased gradually. Current satellites, motors, and debris from old, disused satellites and unutilized rocket stages 
continue to pose a threat to operational satellites and space endeavours [12]. The issue of space debris has been 
extensively documented, with initial analyses utilizing radar and optical control. However, the accuracy of detection, the 
scope of coverage, and the capacity for real-time processing limit these methods [13]. 

Larger particles, for example, helped in tracking larger debris through the Space Surveillance Network (SSN) and the 
European Space Agency's (ESA) Space Debris Telescope [14]. These systems rely on the principles of transmitted radio 
waves and the reception of echoes from celestial bodies. However, radars have a low capability in detecting small debris 
owing to inadequate resolutions and a problem of filtering debris against interference from background noise. J. Dolado 
and B. Revelin 2014 study raised concerns about the growth rate of space debris and its potential impact on satellite 
collisions, thereby highlighting the necessity for improved tracking [12]. 

Some of the recent works, like Liou and Johnson (2010) [13],  have pointed out that radar has its drawbacks when used 
to detect as well as track tiny debris particles. Optical systems, such as the ground optical telescope and space optical 
observatories, provide higher resolutions than radar [15]. These systems use visible or infrared light to take pictures of the 
debris and analyse them to estimate the size and path of the detritus. However, the works of J. R. Ribeiro (2018) [16] and R.  
Haussmann et al. (2021) [17] demonstrate that optical systems require accurate angle positioning and cannot operate in 
bad weather during the day. These constraints hinder the possibility of offering constant and adequate support—a duty to 
offer ongoing and intensive coverage of all sorts of debris but the enormous ones.  

In the present decade, machine learning and deep learning methodologies have attracted much attention in the 
different fields, including object detection [18]. Convolutional neural networks (CNNs) are known to significantly improve 
the results of image analysis and object detection and recognition. The authors, K. He et al. (2016) [19], proposed the 
region-based CNN (R-CNN), in which they achieved better accuracy in object detection by adding region proposals in 
combination with CNN feature extraction. Following that, new improvements, for instance, called Fast R-CNN (Girshick, 
2015) [20] and Faster R-CNN (Ren et al., 2015) [21], helped improve both the detection rate and the speed.   

Redmon et al. [5] recently elevated real-time object detection to new heights with the release of the YOLO (You Only 
Look Once) architecture. One of YOLO's unique features is that it can generate multiple bounding boxes and class 
probabilities from a single network for real-time object detection. Specifically, most applications requiring timely decisions 
will benefit from YOLO's high real-time efficiency. YOLO V2 (J. Redmon and A. Farhadi 2017) [22] and YOLO V3 (Redmon 
and Farhadi 2018) [23] have made improvements to their backbone networks with feature pyramid networks to enhance 
detection performance and detector robustness. 

But even modern YOLO models have their peculiarities when it comes to space debris detection. Space debris 
detection is generally characterized by handling small and fast-moving objects in an ever-changing scenario. M. Haroon et 
al. (2020) [24] applied a number of domain adaptation techniques, focusing on the issues specific to YOLO in identifying 
small and fast-moving objects. They have reported improving the detection rate by fine-tuning the models with space-
specific data sets. 

Data augmentation techniques have significantly contributed to the improvement of deep learning models. There are 
common methods of image augmentation, such as blurring, operation in different colour spaces, and geometric 
transformation, which can mimic many environmental conditions and improve model resilience. Shorten and Khoshgoftaar 
(2019) [25] conducted a survey in which they discussed the role of data augmentation and analysed its efficiency in deep 
learning from the perspective of model generalization and performance. It is critical to learn about augmentation 
techniques because of the differences in space debris detection: size, motion, and illumination conditions.  

Other sophisticated training methodologies, such as dynamically adjusting learning rates and specifically tailored loss 
functions for the particular objects, have made this possible. Other techniques, as demonstrated by Smith et al. (2019) 
[26], involve dynamic learning rates because they can adjust the learning process to the data properties. A special loss 
function can handle the imbalance problem and enhance the detection performance for difficult object classes on the 
basis of focal loss (Lin et al., 2017) [27].  

Some recent studies have focused on the use of the YOLOV4 and YOLOV5 models, which include additional features 
like feature pyramid networks and better data augmentation approaches. More recent architectures include YOLO-V4 
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(Bochkovskiy et al., 2020) [28] and YOLO-V5 (Glenn Jocher, 2020) [29], which have delivered improved object detection 
performance in many application areas. These improvements are particularly important for space debris detection 
because accurate and robust detection is critical for collision avoidance. 

In conclusion, reports have identified radar and optical systems as the fundamental techniques for identifying space 
debris, with recent advances in deep learning, particularly the use of YOLO models, showing tremendous potential to 
increase detection rates. The opportunity to apply YOLO-V8 with adaptive dynamic training is a way to overcome the 
specific difficulties associated with space debris detection. In this study, we look at how to use improved deep learning 
methods along with changes that are specific to the domain. These changes should help improve the accuracy of detection 
and make managing space junk even more efficient. 

3. Materials and Methods 

The study focused on low-Earth orbit (LEO) situations and utilized data collected almost 20,000 from satellite images 
and space debris detection devices as shown in figure 1. The study's geographical coverage encompasses various orbits 
where there is a significant expectation of space debris. This also applies to high-density LEO regions, i.e., areas with a 
large number of working satellites as well as debris. Therefore, the selection of this environment is critical, as it directly 
impacts active space missions and the likelihood of collisions with space debris. Such parameters as orbital altitude, 
debris density, and space weather conditions were critical for the study. Satellite tracking data and space debris reports 
demonstrate the study area's importance and relevance for SSA. 

     For the material, the research used several datasets in the training and testing of the YOLOv8 object detection model. 
This included a wide-ranging set of annotated image examples of space debris as well as operational satellites. The primary 
data sources were as follows: The primary data sources were as follows: 

• Satellite Monitoring Agencies: This source compiles annotated images of space debris from various satellite 
tracking and monitoring systems, providing a complete dataset. 

• Space Surveillance Data: We have gathered data from open sources belonging to renowned space agencies such 
as NASA and ESA. These datasets provide relevant information about space debris and satellites, helping to 
strengthen the study. 

• Custom Data Collection: To diversify the types of debris and satellite, we collected more images and annotations 
from specific LEO missions and experiments. 

The variety of datasets chosen provided a balanced approach to model training and testing, which improved YOLOv8's 
effectiveness and credibility in the identification and classification of space debris. 
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Figure 1. Collected Data of Satellite Images and Space Debris. 

Data Preparation 

We conducted data pre-processing through a number of processes to enhance the model's training data set. In 
order to increase the models' variability and generalization capability, we used data augmentation techniques. The 
Augmentations library offers numerous techniques for various augmentations, such as flipping in the horizontal and 
vertical plane, rotation, scaling, and adjusting colours and brightness. Such techniques made it possible for the model 
to simulate other states of the real world and, at the same time, helped to enhance the model's performance in other 
situations. After augmentation, we split the dataset into three subsets: the training set, the validation set, and the test 
set as shown in figure 2. 

     A rotation transformation could be described in Eq. 1: 

 

(
𝑥′

𝑦′) = (
cos(𝜃) −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
𝑥
𝑦)                              (1) 

 

This rotation maintains the relative positioning of the bounding box while altering the appearance of the object, thus 
enhancing the model’s ability to recognize objects in various orientations. With respect to this classification, we have 
allocated 70% of such annotated images for the training set, 15% for the validation set, and the remaining 15% for 
testing. We did this to have enough data for training the applicants, as well as to maintain a large capacity for assessing 
the mode and its effectiveness. 
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Figure 2. Data Augmentation and Data Splitting Techniques. 

Image Labelling 

Labelling the images played a crucial role in preparing the dataset for training the YOLOv8 model. For our analysis, 
we first gathered a substantial quantity of high-quality images of space debris and operational satellites from satellite 
tracking centres and space missions. Labelling and CVAT were used to label these images in YOLO format. To ensure 
that the system had the correct bounding box for the identified objects, we first cropped the images to the best quality 
before presenting them to the system. We placed these bounding boxes on the labels of satellites. We used the YOLO 
format for these annotations, a text file format that contains information in the form of a class ID and bounding box 
dimensions, normalized by image size as shown in figure 3. The annotation format's similarity to the YOLOv8 model 
format, for instance, made it easier to adjust compatibility as needed. 

Mathematically, the normalization process can be represented in Eq. 2: 

 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑥_ min +𝑥_𝑚𝑎𝑥 

2
, 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 =

𝑦_ min +𝑦_𝑚𝑎𝑥

2
          (2) 

 

Figure 3. Labbled Data of collected images with class ID and bounding boxes. 

Model Training 

We selected YOLOv8 because it supports object detection in real-time, which is paramount in detecting space 
debris. We used a previously trained weight to bring in transfer learning on the model, meaning that training was much 
faster. The training details for YOLOv8 are as follows: We arranged the model using an input image size of 640*640, a 
batch size of 16, and over 50 epochs. We maintained all these parameters to ensure a reasonable training speed and 
optimal performance of the training model. The training command also included data, thus giving the graduates a sound 



37 

base to build on as trainers and assessors. The YAML file held references to training and validation data sets, along with 
a list of class names. This configuration allowed the model to look at a huge range of examples, which suggested that it 
was capable of learning all forms of space debris and satellites. 

Model Validation 

Upon completing the training, the YOLOv8 model underwent a rigorous validation process to assess its 
performance on unseen data. The validation phase utilized the best-performing weights from the training process, 
ensuring that the model was evaluated at its optimal state. The validation process involved setting an Intersection over 
Union (IOU) threshold of 0.65, which is a critical metric for evaluating the overlap between the predicted bounding 
boxes and the ground truth annotations. 

A high IOU indicates a close match between the predicted and actual bounding boxes, which is essential for 
accurate object detection. To expedite the validation process and reduce memory usage, we employed half-precision 
floating-point calculations, which effectively halved the memory footprint without compromising the accuracy of the 
model's predictions. The validation results provided crucial insights into the model's generalization capabilities and its 
performance across different detection scenarios, guiding further refinement and optimization as shown in figure 4 
below: 

 

Figure 4. Intersection over Union Model Architecture. 

Object Detection 

We used YOLOv8 in the object detection phase, testing the approach on both test datasets and realistic settings. 
To reconstruct the images, we borrowed the final model weights and used them to process images from a specific 
source directory that contained both test images and practical data as shown in figure 5. We issued the detection 
command on these images with the intention of providing precise coordinates of operational satellites and space debris 
only. This phase was equally important to test the efficiency of the model within conditions out of the training sample 
and check the ability of the model to solve a wide range of detection problems. 

Mathematically, the detection process can be summarized in Eq. 3: 

𝑃(𝑦|𝑥) = 𝑌𝑂𝐿𝑂𝑣8(𝑥; 𝜃)                               (3) 
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Figure 5. Object Detection Workflow using YOLO V8 model. 

Evaluation Metrics 

To assess the effectiveness of the YOLOv8 model, we used mean average precision (mAP), precision, recall, and 
the F1 score. The F1 score balanced the two measures, with precision quantifying the percentage of correctly detected 
objects and recall indicating the extent of identification of all objects of interest. The mAP metric matrix provided an all-
around evaluation of the model's performance. These metrics were particularly useful in estimating the model's 
performance in identifying space debris and functional satellites. 

Post-Processing 

All the outcomes from the object detection step in the subsequent stage of post-processing were instrumental in 
determining the model’s performance. We benchmarked the model by comparing the output detections with the 
ground truth annotations to ascertain the algorithm's accuracy. We focused specifically on both false positives and 
false negatives to understand the types of errors this model can produce and to guide future error analysis. This type of 
analysis indicated parts of the process that could be elaborated in order to achieve better results. In the previous 
section, we presented the results of post-processing the current phase's outcomes to improve the model and predict 
future outcomes. 

Methodology flow diagram shown in figure 6 below: 
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Figure 6. Debris detection process using Yolov8 model architecture. 

4. Results and Discussions 

Comprehensive Analysis of Training and Validation Loss 
The plots shown in figure 7 represent the training and validation losses. During the training phase, we observe the 

model training process in detail. Over fifty epochs, the curves represent the evolution of three key loss metrics: box loss, 
object loss, and classification loss. The progressive reduction of such losses proves that the model possesses the 
ability to localize objects, detect them, and recognize them correctly. The training loss curves make it clear that they 
have a smooth upwards sloping curve, indicating that the model was able to adequately learn the features of the 
datasets. Conversely, the validation loss curves show a slight decrease and slight oscillation, potentially indicating 
overfitting or the random nature of the validation set. Future work will emphasize these variations, potentially by 
improving regularization methods or expanding the sample space. 

 

Figure 7. Training and Validation losses during Training phase. 

Detailed Quantitative Evaluation of Model Performance Metrics 
Table 1 provides detailed information on all the quantitative performance measures, including precision, recall, F1 

score, and mAP. These metrics are critical for assessing the model's ability to identify space debris and operational 
satellites. The YOLOv8 model achieved a precision of 92.5%, indicating that of the analysed reviews fell into the true 
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positive category, limiting the number of false positive cases to these few reviews. We achieved a recall rate of 89.3% to 
validate the model's ability to identify true positives, ensuring a high probability of correctly identifying most objects. 
The model achieved an F1 score of 89.8%, demonstrating a robust balance between precision and recall, indicating its 
exceptional ability to identify various object types. The mAP represents an improvement of 92.6% in the model, further 
confirming its effectiveness in various aspects such as object localization and classification across multiple scenarios. 

Table 1: Quantitative performance measure include precision, recall, F1 score and mAP 

Epochs Train loss Object loss Class Loss Precision Recall mAP_0.5 Val loss Val/Class 
loss 

0 0.0836 0.0262 0.0629 0.00768 0.7625 0.0451 0.0103 0.0702 
10 0.0436 0.0149 0.0227 0.712 0.4444 0.5133 0.0277 0.0324 
20 0.0389 0.0138 0.0143 0.840 0.7947 0.8712 0.0236 0.0059 
30 0.0358 0.0134 0.0104 0.843 0.8279 0.8871 0.0221 0.0063 
40 0.0326 0.0128 0.0080 0.778 0.8327 0.8571 0.0220 0.0095 

 
Precision-Recall Curve Analysis and Its Implications for Model Robustness 

Figure 8 is among the significant tools for uncovering the relationship between precision and recall, given a 
particular decision threshold. The PR curve is rather valuable in those cases when the costs of false positives and false 
negatives are not the same, as in the case of space debris detection, in which the absence of a piece of debris can 
prove deadly. The curve shows that the YOLOv8 model performs very well in terms of precision and recall, even if the 
threshold is varied a lot, which shows the model is strong and can be relied on. This capability is a necessity in real -
world applications, such as a method that is required to detect space debris with high levels of certainty and with 
minimal gaps or oversights. From the shape of the PR curve, it can be understood that the model is well calibrated, 
which in turn allows it to accurately bin itself into different objects without being too dependent on the threshold 
settings. 

 

 

Figure 8. Precision Recall curve analysis using Yolov8 model. 

Confusion Matrix and Class-Wise Performance 
The confusion matrix, which we discuss below and illustrate in figure 9, provides another evaluation of the 

developed model's performance. This matrix is critical for defining the model's specificity in focus areas and refining it 
as needed. The diagonal line contains the majority of entries, indicating the correctness of most predictions. But I see a 
few entries on the place where the letter ‘o’ crosses the other letter’s row and column; this shows that the model 
diagnosed the wrong objects. These misclassifications are especially apparent in classes that are visually 



41 

indistinguishable, including different sorts of refuse that can look the same when viewed visually from a satellite. The 
confusion matrix highlights the need for more data fine-tuning with the goal of possibly expanding the model's training 
base under these difficult or hard classes in order to improve the model's discrimination capability. 

 

 

Figure 9. Confusion Matrix and class wise performance. 

F1 Score Curve and Its Relevance to Model Calibration 
Figure 10 represents the F1 score, an important measure that reflects the model's ability to optimize precision and 

recall for different thresholds. The F1 score is the harmonic mean between precision and recall, so it is the single value 
that corresponds to both of the two measures of performance. The curve demonstrates that the model maintains a 
high F1 score regardless of changes in the threshold value, indicating its calibration and ability to perform well in any 
detection scenario. This is particularly pertinent when discussing SDs, as they require high precision (the proportion of 
true positives) and high recall (the proportion of true negatives) rates. It is the key concept that eliminates the risks of 
failing to detect objects of interest and, vice versa, eliminates the generation of false alarms. 

 



42 

Figure 10. Overall F1 score and Class- wise F1 score. 

Label Correlogram and Analysis of Class Correlations 
The label correlogram shown in figure 11 displays the relationships among various object classes identified by the 

model. This analysis is very important to look into in order to understand how different space debris affects operational 
satellites. A highly valuable diagnostic tool is the correlogram, which shows how similar the distribution of different 
debris types is: if two types of debris are close to each other on the correlogram, then the objects in these types seem 
to be located in the same images more often or have similar visual characteristics. Understanding these correlations is 
critical if one is to make corrections to the model that will help to minimize misclassifications. For example, if there are 
some types of debris that are often confused with each other by a classifier, it is possible to increase the amount of 
training data for these classes or use a more complex network architecture. 

 

Figure 11. Label Correlogram and Analysis of class correlations. 

Precision and Recall Curves: Detailed Insights into Threshold Sensitivity 
Figures 12 and 13 display the precision-recall curves, providing a summary of how these metrics change as the 

decision threshold increases. Ideally, the precision curve shows that the model retains a high level of precision for a 
number of thresholds, ensuring that it is able to produce few false positives. The second curve, which is the recall 
curve, also depicts the fact that the same model maintains a high recall level, ensuring that it will find most of the true 
positives. When combined, these curves confirm that the YOLOv8 model is a suitable and stable performer for space 
debris detection tasks, provided the detection threshold is optimal. That is why it is critically important in operational 
environments to have some level of flexibility in the recall vs. precision ratio depending on the current mission needs. 
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Figure 12. Precision Confidence Curve for overall classes and each class. 

 

Figure 13. Recall Confidence Curve for overall classes and each class. 

Examination of Validation Batch Labels and Predictions 
Figures 14 display samples from the validation set, utilizing both the ground truth labels from the validation batch and the 

predictions from the validation batch. These images give a depiction of the types of objects that the model is capable of 

detecting and differentiating between them. Based on the ground truth labels and the model's predictions, it is evident that the 

model produces reasonable outputs, with the majority of the predictions closely aligning with the labeled objects. However, in 

cases where objects overlap or complex backgrounds exist, the model's prediction may deviate from the ground truth. Such 

differences indicate that it is still necessary to improve the model, perhaps with the help of further extended data augmentation 

procedures or with the help of getting more training samples that include such difficult cases. 
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Figure 14. Examination batch label of training dataset. 

 

Post-Processing and Error Analysis for Model Improvement 
In table 2, we have the precision and recall values of the detLet outputs of the post-processing step against the 

ground truth annotations. In this part of the analysis, it is possible to define which areas the model is weaker and 
stronger in, and in which it is sensible to invest. The analysis of the simulation results reveals that the model excels in 
detecting large, well-distinguished objects. However, when it comes to object construction, the model performs less 
well when the objects are small and contain similar debris. This is a common occurrence in object detection scenarios, 
providing an opportunity to enhance the model's architecture or training methods for more accuracy. We also present 
an error analysis for instances where we can further enhance the model, such as high object density or stuntage 
incidence. 

 

Table 2: Precision and Recall Analysis Across Different Object Detection Scenarios 

 
Object Category Precision Recall Observations Area of Improvement 

Large, Well-

Distinguished 

Objects 

0.89 0.87 The model performs 

very well in detecting 

large, clear objects. 

Continue optimizing for 

speed and robustness. 

Small Objects with 

Similar Debris 

0.65 0.60 The model struggles 

to detect small 

objects when they are 

surrounded by similar 

debris. 

Enhance model architecture 

and training data for small 

objects. 

High Object Density 0.70 0.68 Performance drops in 

scenarios with a high 

density of objects, 

leading to 

overlapping 

detections. 

Improve handling of object 

overlap and refine non-

maximum suppression 

(NMS). 

Stuntage Incidence 0.60 0.57 The model has Develop methods to better 
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difficulty detecting 

objects when they are 

partially occluded or 

stuntage occurs. 

detect partially occluded 

objects. 

 
Visualization of Detection Results in Real-World Scenarios 

Figure 15 shows the final detection result images, revealing how well the YOLOv8 model works in practical 
environments. We chose these images to demonstrate the model's effectiveness in identifying and recording space 
debris, even in congested areas. The detection results align with the confidence scores, indicating a higher level of 
confidence in the model's prediction. This visualization is beneficial for proving the feasibility of the model in space 
debris observation and control, as precise debris detection in space is crucial to the accomplishment of lossless space 
missions.  

 

 

Figure 15. Detection result in real world scenario using yolov8 training model. 

Discussion 
The analysis of the metrics derived from the YOLOv8 model indicates that the model adequately supports the 
identification and categorization of objects of interest, specifically space debris and operational satellites. This means 
that it is precise; recall, F1 score, and mAP indicate that the model will be more effective in real-life scenarios. 
Nevertheless, the study also points to several issues when distinguishing classes or identifying smaller and less 
contrasting objects. These difficulties underscore the potential for enhancement in both the fine-tuning process and 
the augmentation of data. 

Challenges and Limitations  
Although the model was effective in general, the confusion matrix and the label correlogram showed that there were 
some issues with the model for some of the classes of objects that are either visually similar or are typically found in 
groups. Such a limitation may suggest that the model requires an additional data set rich in hard-hyponaming 
conditions, or it may necessitate a modification to the model architecture to enhance the discriminator's ability to 
distinguish between the two classes. 

Error Analysis and Recommendation 
We identified some major errors and recommend improving them in the future. During the post-processing error 
analysis, we identified specific areas for improvement where the performance comparison revealed the model's 
inefficiency, particularly in detecting small or partially concealed objects. This scenario is a common occurrence in 
object detection tasks, underscoring the need to enhance the model architecture or training strategies. Some of the 
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possible solutions for this problem are the use of sophisticated augmentation methods that mimic such adverse 
conditions and the inclusion of other training data that is related to such adverse conditions.  

Future Research Directions 
Future work should address the enumerated difficulties using better model structures or training regimes. However, 
future investigations could focus on assessing the potential of combining YOLOv8 with other object detection models 
to maximize their utilization and achieve optimal object detection. Another area that could be improved is through 
additional post-processing, which could enable the detection of fading or less pronounced objects, while also 
safeguarding the AI model from malfunctions in complex environments. 

5. Conclusion 

In this study, the YOLOv8 model had remarkable performance in finding and identifying space debris and operational 
satellites in the LEO environment. We report the model achieving a decent F1 score of 0.89, Precision is 0.93, and mAP of 
0.90, confirming its efficiency in real-world objects’ detection paradigms. These metrics define the possibility of applying 
the used model to increase the level of SSA, as well as the accuracy of object identification and classification in various 
conditions. The confusion matrices validated the model's practicality for accurate scoring and classification of tenancies, 
and the analyses of the PR curves and F1 scores confirmed the reliability of our proposed model in real-world practical 
applications. 

Overall, the model achieved a high percentage, but the study also identified areas for improvement, particularly in 
cases where the analyzed objects are small or visually similar. The confusion matrix and label correlogram analysis showed 
which classes had the most mistakes. This suggests that the training data set and/or model architecture need to be 
improved. The post-processing error analysis also showed where the model's errors were coming from; suggesting that the 
model might need better techniques for adding more data or a more diverse member in the training data set to handle this. 
These issues will be critical for the model's continued refinement and optimization, making it more useful in space 
operations. 

 Future work should focus on various areas to improve the efficacy of the proposed model. First, we should consider 
developing more complex model architectures, such as integrating YOLOv8 with other popular object detection models, to 
improve the system's detection accuracy that could be used to train the model and focusing on more difficult and diverse 
cases, especially for the classes that are underperformed, will be critical for the boosting of the model’s performance. 
Finally, it is possible to improve the proposed model by incorporating a higher level of post-processing that includes multi-
scale detection and object tracking algorithms, as it might be difficult for the proposed model to detect small or partially 
occluded objects. Therefore, future model variations could achieve higher levels of accuracy, reliability, and relevance, 
thereby enhancing space mission control and public safety in managing the emerging space debris situation  
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