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Image classification is one of the fields of utmost importance in computer vision 
that has numerous applications in real-world scenarios. GoogleNet is one of the 
commonly used deep models that is especially utilized for object detection and 
image classification by learning and understanding visual patterns. This study 
investigates how the GoogleNet model performs on image classification using 
three factors: Sample size, dataset balance, and various train-test split ratios. 
Model accuracy was tested on the CIFAR-10 dataset by trying it out on dataset 
sizes of 25%, 50%, 75%, and 100%, both with and without balance. The results 
show that both the size and balance of the dataset have a direct impact on 
classification accuracy, with balanced datasets always yielding higher accuracy 
rates compared to unbalanced datasets. In addition, when comparing various 
train-test ratios 50%-50%, 60%-40%, 70%-30%, 80%-20%, and 90%-10% the 
best performance of the model was achieved when it was trained on 70% of the 
data and tested against the other 30%. 
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1. Introduction 

Image classification is a critical task in computer vision with implications in a vast number of domains ranging from 
healthcare [1], through agriculture [2], to e-commerce [3]. Standard machine learning (ML) methods typically rely on 
manually-designed features, which do not generalize well across different datasets. However, advancements in 
deep learning (DL) notably by Convolutional Neural Networks (CNNs) significantly enhanced image classification 
applications by simplifying feature extraction and model generalization across disparate kinds of data. Despite such 
advances, execution of high-performance CNNs on low-computational devices remains a challenge. To address 
this issue, GoogleNet [4] was introduced, introducing a structure that minimized computational and memory 
utilization through tools such as inception modules and depthwise separable convolutions with competitive levels 
of accuracy maintained. Though GoogleNet is more famous for being highly efficient, its performance is based on 
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several factors in total, which vary from hyperparameter setting, data size, class balance, and proportion of the data 
allocated for training and testing. Hyperparameters like learning rate, batch size, and number of training epochs 
form the core of controlling how well and accurately the model learns from data [5]. The poor settings can result in 
problems such as slow convergence, underfitting, or overfitting. Another major issue is class imbalance in data, 
which results in predictions made by the model biased towards majority classes and thus reducing its effectiveness 
in classifying minority instances [6]. Various strategies such as oversampling, undersampling, and synthetic data 
generation approaches like SMOTE [7] have been tried to combat this issue. Additionally, dataset size is a critical 
parameter in quantifying a model's ability to generalize well [8]. The train-test split ratio used to split data into 
training and test sets also directly affects model performance [9], since a bad split might leave the model with 
insufficient training data or provide unstable evaluation. While individual effects of dataset size  [8], class 
balancing [10], and train-test split ratios [9] have been studied in earlier studies, there are not many studies on how 
these factors affect performances of models like GoogleNet as a whole. This research aims to fill this knowledge 
gap by exploring the interaction of these factors on GoogleNet's image classification performance on the CIFAR-10 
dataset. The objectives of this study are: (1) to evaluate the effect of varying dataset sizes, (2) to examine the 
influence of the impact of class balance on the outcome of classification, and (3) to find the best train-test split ratio 
for enhancing the model generalization.This study makes several important contributions. Its primary contributions 
include a thorough evaluation of GoogleNet's performance across different sizes of data sets, an examination of 
how balanced and imbalanced data sets impact model accuracy, and a comparative analysis of the effects of 
various train-test split ratios on generalization performance.The remainder of this paper is organized as follows: 
Section 2 provides a literature review, Section 3 provides the methodology adopted, Section 4 provides the 
experimental setup, Section 5 provides the results, and Section 6 concludes the research with the findings and the 
recommendations for future research. 

2. Related Work 

GoogLeNet has gained popularity because of its efficient architecture, making it suitable for real-time applications 
and lowering the cost of computations compared to previous deep learning architectures. Szegedy et al., [11] 
introduced GoogLeNet optimized for computational cost by lowering parameters and memory consumption 
through Inception modules and global average pooling. Subsequent architectures extended this further through 
the inclusion of depthwise separable convolutions and other optimizations to make it more efficient while being 
competitive on accuracy. Despite its popularity, there has been limited research on how differences in train-test 
split ratios, class balance, and dataset size influence GoogLeNet's classification accuracy. The significance of 
dataset size was already noted in earlier studies of deep learning. The study by Chen Sun et al. [12] shows that 
larger datasets increase generalization but that the increment decreases after a certain point. Class variance is 
another significant challenge in supervised learning. Models trained on imbalanced datasets tend to acquire bias 
toward majority classes, and the minority class instances are not well identified. Research by Nitesh V. Chawla et 
al. [7] highlights how imbalanced data would impact model predictions in a negative direction. Mateusz Buda et al. 
[14] studied the impact of class imbalance on CNNs and compared various methods to combat this issue.  
 
Research conducted by Spelmen Vimalraj [15] suggests that the SMOTE technique is an effective method to 
address class imbalance but other techniques such as oversampling and undersampling have also been examined 
since they can be utilized as solutions [16]. Ratios of train-test splits are the most important factor in evaluating 
the model. Houda Bichri et al. [9] tested different split ratios, i.e., 60%-40%, 70%-30%, 80%-20%, and 90%-10%, 
to study their influence on the executions of a number of pre-trained models. Further, Ismail Olaniyi Muraina [17] 
studied the effect of different training-testing splits variations on model performance and concluded that the 
optimal ratio is dataset size-dependent, which have direct impacts on generalization. Although these studies offer 
convenient insights into individual factors that influence model performance, not much research systematically 
examines their overall impact. 
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Recent studies have focused on refining CNN-based models for medical, agricultural, and IoT applications, 
making their performance in real-world applications even higher. Unnisa et al. [18] studied the effect of 
hyperparameter tuning on convolutional neural networks for detecting skin cancer, and found that parameter 
tunning significantly increases classification performance in complex medical imaging tasks. In parallel, Sarwar et 
al. [20] combined few-shot learning with transfer learning on breast cancer detection, which effectively mitigated 
the difficulties of small dataset and improved the efficiency of models. 

 In the context of computation overhead efficiency, Shah et al. [19] proposed an efficient and lightweight 
signcryption scheme for secure communication in UWSNsFor secure available resources optimization, we can 
observe that the timely demand of optimized resource-aware architectures like GoogLeNet in resource 
constrained environment cannot be overemphasised. Furthermore, in the domain of predictive analytics, Ayub et 
al. [21] proposed a multi-level deep learning autoencoder model for parametric time series forecast, which 
demonstrated useful versatility of CNN-based paradigms beyond typical classification problems. 

CNN architectures have also been used in the field of agriculture and environmental monitoring. Wang et al. [23] 
developed a hybrid deep learning method for early rice barn shade-disease detection within polytunnel IoT-based 
smart agriculture which reflects how adapted CNN models can be used in low resource, real world 
scenarios.Ullah et al. [24] proposed a machine learning-based intelligent decision-making system for energy-
efficient fog node selection and intelligent switching in IoT networks, demonstrating the real-
world applicability of lightweight yet high-accuracy models for distributed systems. 
In medical image processing, Sarwar et al. [22] proposed the combination of deep learning and ant colony 
optimization to enable accurate segmentation of skin lesions, with notable improvement in detection accuracy 
and computational cost. Similarly, Akram et al. [25] proposed an edge-weighted texture feature 
extraction technique for breast cancer diagnosis from histopathological images, as an alternative to CNN-
based models for image classification problems that are challenging to solve. This research will fill that gap by 
assessing the accuracy of GoogLeNet classification for the CIFAR-10 dataset with different dataset sizes, class 
balancing methods, and train-test split ratios. The results would be very valuable to guide researchers and 
practitioners in enhancing deep learning models for image classification.  
 

3. Used Approach 

The research process utilized in this research is illustrated in Figure 1. It starts with gathering the dataset needed to 
classify images based on the GoogleNet model. Once the data is collected, it is separated into four portions 25%, 
50%, 75%, and 100% to analyze the performance of the model based on varying dataset sizes. Each segment is 
also analyzed under two scenarios: balanced and unbalanced, to measure the impact of class distribution. To 
further investigate the impact of train-test data ratios, the dataset is divided into five different splits: 50%-50%, 
60%-40%, 70%-30%, 80%-20%, and 90%-10%. Image preprocessing is done through the Keras library with 
operations like resizing, rescaling, and application of data augmentation processes such as shear transformations, 
zooming, and horizontal flipping. The model is configured with the best hyperparameters, which include the Adam 
optimizer, a learning rate of 0.001, and categorical cross-entropy as the loss. Training is conducted over 10 epochs 
with a batch size of 32. For the purpose of performance analysis, a number of metrics are taken into account, such 
as accuracy, precision, recall, F1-score, and ROC-AUC, in addition to computational measures like training time, 
memory consumption, and time complexity. All these metrics provide a comprehensive evaluation of the model's 
effectiveness and efficiency in performing image classification tasks. 

 



124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Proposed Methodology Workflow for GoogleNet Image Classification Experiments 

The hyperparameters we used in our experimentation are shown in Table 1 along with their purpose and values. 

 
Table 1.List of Hyper-Parameters along with their purpose and values used in the experimentation of Googlenet 

Hyperparameter                       Purpose                               Value 

Optimizer Algorithm used for optimization. Adam 

Learning Rate Learning Rate control weight update size 0.001 

Loss Function Loss Function measures prediction Error Binary Cross- Entropy 

Data Enhances dataset diversity through Rescale=255, Shear=0.2, Zoom=0.2, 
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Augmentation transformations. Flip=True 

Activation 
Function 

Introduces non-linearity for com- plex 
pattern learning. 

ReLU (Conv and FC layers) 

Epochs Epochs define data pass through the model 10 

Batch Size Number of samples processed in a batch. 32 

Stride Stride sets filter moment in pooling 1 

Padding Padding preserves image dimension Same Padding 

Fully Connected 
Layer Size 

Fully Connected layers define neurons 
before output 
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Momentum Momentum smooths training updates Not applicable (Adam used) 

Weight Decay Regularization parameter to pre- vent 
overfitting. 

0.0001 

Dropout Rate Fraction of neurons dropped during training. 0.5 

 

4. Experimentation 

 
The data used in this research were obtained from Kaggle, and the testing was done on both the local hardware 
and cloud utilizing Google Colab. The local system used to deploy models was Windows 11 Home with an 
Intel(r) Celeron(r) N4120 processor at 1.10 GHz, and 4.00 GB of RAM (3.82 GB available). Such hardware setups 
had some computation constraints, particularly when working with computationally intensive deep learning 
processes. To avoid these constraints, the T4 GPU on Google Colab was utilized, which provided a cloud 
environment of 15.0 GB RAM and approximately 50 GB of available disk space. The environment supported 
increased model training and testing in deep learning processes. Python was employed as the underlying 
programming language for experiments due to its extensive libraries and frameworks supporting model 
construction, training, and testing. 
 
For the optimization, Adam optimizer was employed due to its empirical stability and adaptability in CNN-
based image classification tasks, as suggested by Wojciuk et al. [5]. The learning rate was set to 0.001, striking 
a balance in providing training stability and having an acceptable convergence rate. Training was performed 
with a batch size of 32 for 10 epochs, a configuration reached through preliminary experimentation for 
providing stable performance without overfitting within available computing resources. Data augmentation 
methods, such as shear transformations, zooms, and flips, were used to enhance the diversity of the dataset 
and enhance the model's capacity for generalization. The augmentation methods were selected specifically 
because they introduce natural variations in the data without warping the intrinsic properties of an image, a 
procedure that is classically demonstrated by Szegedy et al. [12] and other related CNN-based research. 
 
This study used the CIFAR-10 dataset, as originally suggested by Krizhevsky et al., and widely used for 
benchmarking image classification models. Downloaded from the Kaggle website, the CIFAR-10 dataset 
consists of 60,000 color images with dimensions 32×32 pixels and weighs around 163.2 MB. It is split into three 
broad categories: training, test, and validation. It contains 50,000 images in the training set and 10,000 in the 
test set. Every image is assigned to one of ten pre-defined classes: airplane, automobile, bird, cat, deer, dog, 
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frog, horse, ship, and truck. Although some datasets keep images in separate folders per class, CIFAR-10 
keeps data in a bundled format, and therefore label mapping is needed in pre-processing. One of the primary 
advantages of CIFAR-10 is that it provides class distribution balance with 5,000 training images and 1,000 
testing images per class, enabling fair training of the model and unbiased performance measurement. 
 
To estimate the effect of dataset size and class distribution on model effectiveness, the test was run on four 
proportionally increasing segments of the dataset: 25%, 50%, 75%, and 100% of the CIFAR-10 dataset. Two 
instances were prepared for each proportion, one with balanced distribution over all classes and another that 
introduced class imbalance. This two-stage approach enabled an exhaustive exploration of how both dataset 
size and distribution impact classification accuracy. In the balanced subsets of the dataset, both classes were 
represented equally to enable equal training and testing. The unbalanced subsets, on the other hand, had 
more images in the majority classes than in the minority classes. In the 25% subset, for example, there were 
2,000 images per majority class and 1,000 per minority class, totaling 15,000 images. There were 30,000 
images in the 50% subset, with 4,000 per majority class and 2,000 per minority class. There were 6,000 and 
3,000 images for majority and minority classes respectively in the 75% subset, totaling 45,000 images. Finally, 
the full 100% subset consisted of 60,000 images, with 8,000 per majority class and 4,000 per minority class. 
 
The detailed specifications of Balanced and Unbalanced datasets at various proportions are provided in Table 
2. 
 
Table 2.Specification of Balanced and UnBalanced Ciphar-10 Dataset Across Different division 

Dataset Type Size Total Samples Images per 
Class 

Dominant (5) Minor (5) 

25% Balanced 25% 15,000 1,500 1,500 1,500 
50% Balanced 50% 30,000 3,000 3,000 3,000 
75% Balanced 75% 45,000 4,500 4,500 4,500 

100% Balanced 100% 60,000 6,000 6,000 6,000 
25% Unbalanced 25% 15,000 Dom: 2,000 2,000 1,000 
50% Unbalanced 50% 30,000 Dom: 4,000 4,000 2,000 
75% Unbalanced 75% 45,000 Dom: 6,000 6,000 3,000 

100% Unbalanced 100% 60,000 Dom: 8,000 8,000 4,000 
 

5. Result & Analysis 

 

The Efficiency of the GoogleNet model on 25%, 50%, 75%, and 100% balanced and unbalanced datasets are 
presented in Table 3.  

 
Table 3.Evaluation Metrices of Balanced and Unbalanced Datasets Across Different Divisons 

Ratio Accuracy Precision Recall F1-Score ROC-AUC 
25% Balanced 80.43% 0.6056 0.5743 0.5664 0.9167 
50% Balanced 79.40% 0.7994 0.7940 0.7926 0.9725 
75% Balanced 78.64% 0.7883 0.7864 0.7852 0.9756 

100% Balanced 78.16% 0.7848 0.7816 0.7817 0.9759 
25% Unbalanced 71.22% 0.7263 0.7122 0.7139 0.9597 
50% Unbalanced 64.38% 0.6901 0.6438 0.6484 0.9365 
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75% Unbalanced 77.40% 0.7794 0.7740 0.7727 0.9738 
100% Unbalanced 77.91% 0.7820 0.7791 0.7784 0.9732 

 

For the 25% balanced dataset, the model performed with an accuracy of 80.43%, along with a precision of 
0.6056, recall of 0.5743, F1-score of 0.5664, and a ROC-AUC score of 0.9167. On comparison, when the model 
was tested on the 25% unbalanced dataset, the performance decreased to an accuracy of 71.22%, precision 
of 0.7263, recall of 0.7122, F1-score of 0.7139, and a ROC-AUC score of 0.9597. Shifting to the 50% dataset 
size, balanced dataset gave 79.40% accuracy, precision of 0.7994, recall of 0.7940, F1-score of 0.7926, and a 
ROC-AUC score of 0.9725. In contrast, the unbalanced dataset had a significant drop in performance and 
achieved just 64.38% accuracy along with proportional declines in other measurement metrics, as shown in 
Table 3. 

A particularly interesting observation was that the model’s effectiveness on the 50% unbalanced dataset was 
worse than on the 25% unbalanced dataset. This can likely be attributed to the increased sampling imbalance 
as the dataset size grew without addressing class distribution. As the number of majority class samples 
expanded at 50%, the model became increasingly biased towards these dominant classes, neglecting minority 
class patterns. This overfitting to the majority classes negatively impacted overall classification accuracy. 
However, as the dataset size was further increased to 75% and 100%, performance improved progressively. 
This improvement is likely because the number of minority class samples also rose, giving the model better 
opportunities to learn from these underrepresented classes, which helped reduce overfitting and enhanced its 
generalization ability. Similar findings were reported by Buda et al. [14] and Unnisa et al. [18], who discussed 
how data imbalance affects CNN-based classification and how increasing minority class representation can 
mitigate its adverse effects. 

At the 75% sample size, the balanced dataset continued to outperform the unbalanced one, with an accuracy 
of 78.64%, while the unbalanced dataset achieved 77.40%. Finally, when utilizing the complete 100% dataset, 
the balanced dataset recorded an accuracy of 78.16%, while the unbalanced dataset achieved a slightly lower 
accuracy of 77.91%. A consistent trend observed throughout the experiments was that increasing dataset size 
led to improvements in performance metrics for both balanced and unbalanced datasets. However, balanced 
datasets consistently delivered better results, particularly in terms of precision, recall, and F1-score. These 
trends are visually represented in Figure 2 and Figure 3, while resource usage details are provided in Table 4. 
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The bar graph in Figure 2-3 consistent with earlier results as presented in Table 3. Resource usage metrics 
for evaluating the model’s performance on balanced and unbalanced datasets at different proportions is 

Figure 2.Performance Comparison of GoogleNet on Balanced CIFAR-10 Dataset at Different Dataset Sizes 

Figure 3.Performance Comparison of GoogleNet on Unbalanced CIFAR-10 Datasets at Different Dataset 
Sizes 
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presented in Table 4 
 
 
    Table 4.Resource Usage Metrices of Balanced and Unbalanced Datasets Across Different Divisons 

Ratio Training Testing Time Complexity Memory 

 25% Unbalanced 64.97 sec 4.90 sec O(N*E*C) 1844.3 MB 
 50% Unbalanced 126.14 sec 5.78 sec O(N*E*C) 1873.6 MB 

 75% Unbalanced 169.03 sec 4.91 sec O(N*E*C) 1873.6 MB 

   100% Unbalanced 190.82 sec 4.75 sec O(N*E*C) 1869.6 MB 

        25% Balanced 697.36 sec 2515.24 sec 47112729.52 Flops/sec 1464.8 MB 
50% Balanced 210.02 sec 3.80 sec 673229.33 Flops/sec 1673.2 MB 

75% Balanced 191.26 sec 5.05 sec O(N*E*C) 2012.68 M 

 100% Balanced 212.68 sec 5.29 sec O(N*E*C) 2042.3 MB 

 
 
The performance measures attained by training and testing the model with the balanced and unbalanced 
datasets of four varied dataset sizes are shown in Table 4. Performance measures such as training time, testing 
time, total running time, memory space, and computational complexity were considered in this comparison. It 
is shown by the results that with the increase in the dataset size, the model takes more time to train and test, 
and it also needs more memory. Balanced datasets, in reality, are well known to require additional computation 
resources due to the balanced distribution of each class, thereby demanding more processing needs while 
training. For instance, with the 25% unbalanced dataset, the model trained in 64.97 seconds, tested in 4.90 
seconds, and consumed 1844.30 MB of memory. The 25% balanced dataset consumed much more resources 
trained in 697.36 seconds, tested in 2515.24 seconds, and consumed 1464.80 MB of memory. Double the size 
of the dataset to 50%, the balanced dataset trained in 210.02 seconds, tested in 3.80 seconds, and consumed 
1673.21 MB of memory. The unbalanced dataset of the same size, however, trained in 26.14 seconds, tested in 
5.78 seconds, and consumed 1873.63 MB of memory. 
 
At 75% dataset, the balanced dataset used 191.26 seconds to train, 5.05 seconds to test, and 2012.68 MB of 
memory. Its unbalanced counterpart, however, used a total of 173.94 seconds and 1873.63 MB of memory. 
Then, at full 100% sample size, the balanced dataset used the most, with its training taking 217.96 seconds in 
total and 2042.36 MB of memory. The unbalanced dataset at the same size, however, took 194.16 seconds to 
complete its process while using 1869.68 MB of memory, which shows lower computational requirements. 
These findings, as Figure 4 depicts, clearly indicate that although larger and well-balanced datasets correspond 
to higher processing time and memory consumption, they are typically found to provide better model 
performance compared to unbalanced datasets. 
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Figure 4.Resource Usage Comparison for Balanced and Unbalanced Datasets at Various Dataset Proportions 

 
Figure 4 illustrates the trend is consistent across other dataset proportions, as reflected in Table 4. 
Additionally, at each division balanced datasets consume more resources and memory compared to the 
unbalanced dataset. An unusual spike in the testing time was observed in the 25% balanced dataset case. 
Through this, the overhead that is being faced to process the same number of 
samples for every class using augmentation techniques caused greater fluctuation at test time and led to 
longer evaluation time. In contrast, the 25% unbalanced dataset had a skewed distribution dominated by 
majority class samples, resulting in less computational complexity and faster testing. At higher dataset 
sizes such as 75% and 100%, this testing time anomaly did not occur because GPU memory was utilized 
more efficiently, and batch processing became more stable due to the larger number of samples, even in 
unbalanced conditions. This improved system-level optimization helped stabilize testing time at larger 
scales regardless of class balance. 
 

Further experiments were conducted using various training and testing split ratios, including 50%-50%, 60%-
40%, 70%-30%, 80%-20%, and 90%-10%, as detailed in Table 6. The corresponding images number allocated 
to each split configuration is listed in Table 5. The results from these tests indicate that the model achieved its 
best performance when trained with 70% of the data and tested on the remaining 30%. Specifically, with 42,000 
images used for training and 18,000 for testing (as outlined in Table 5), the model attained its highest accuracy 
of 80.93%, along with a precision of 0.8098, recall of 0.8093, and a ROC-AUC score of 0.89.This superior 
performance at the 70%-30% split is attributed to the model receiving an optimal amount of training data, 
allowing it to effectively learn meaningful patterns while still having a sufficiently large and diverse testing set 
to reliably evaluate its performance. The dispersion of images across different train-test split ratios is provided 
in Table 5 for reference. 
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          Table 5. Number Images Across Different Training-Testing Ratios 

Split Ratio Training Images Test Images Total Images 

50%-50% 30,000 30,000 60,000 

60%-40% 36,000 24,000 60,000 
70%-30% 42,000 18,000 60,000 

80%-20% 48,000 12,000 60,000 

90%-10% 54,000 6,000 60,000 

 
The corresponding performance metrics are reported in Table 6. 
 
         Table 6.Performance Metrices Across Different Training-Testing Ratios 

Ratio Accuracy Precision Recall Support ROC 

50% Training 50% Testing 78.56% 0.7901 0.7856 5000.0 0.88 

60% Training 40% Testing 78.48% 0.7876 0.7848 10000.0 0.88 

70% Training 30% Testing 80.93% 0.8098 0.8093 10000.0 0.89 

80% Training 20% Testing 80.19% 0.8071 0.8019 10000.0 0.79 

90% Training 10% Testing 79.76% 0.8009 0.7976 10000.0 0.89 

 

 

 
Figure 5.Impact of Training-Testing Splits on Performance Metrics of GoogleNet Model 
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Figure 5 shows the performance of the model using various training and testing split ratios. When it was tested 
using the highest accuracy, the 70%-30% train-test split was used. Using this ratio, the model achieved a 
reasonable amount of resource consumption, which included 243.72 seconds and 3.59 seconds of training 
and testing time, respectively, and 3171.60 MB of memory consumption, as shown in Figure 6. This is because 
this ratio strikes an optimal balance between having sufficient data to enable the model to learn sufficiently 
and sufficient unseen data to adequately test its generalization ability. 

The results also show that when the proportion of training data is too great compared to test data, the model 
overfits too specific in the training set and performing poorly on new, unseen examples. Overfitting was seen 
at the 90%-10% split, at which the model's performance dramatically dropped. At lower proportions like 50%-
50% and 60%-40%, the model underperforms its potential due to a lack of training data. Notably, performance 
at the 80%-20% split was actually below optimal compared to these lower proportions, suggesting that an 
equal division between training and test data is required for optimal performance. 

 

Table 7.Resource Usage Metrices across Different Training-Testing Ratios 

Ratio Training Time Testing Time(s) Memory(MB) 

50% Train, 50% Test 267.53 1.81 3122.02 

60% Train, 50% Test 216.99 4.25 3155.76 

70% Train, 50% Test 243.72 3.59 3171.60 

80% Train, 50% Test 251.05 3.83 1695.29 

90% Train, 50% Test 326.41 3.76 1709.27 

 

Figure 6.Training Time, Testing Time, and Memory Usage Across Different Train-Test Split 
Ratios 
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6. RESULT DISSCUSSION 
 
The results presented in Table 3 and visualized in Figures 2 and 3 demonstrate a clear trend: balanced 
datasets consistently achieve higher accuracy and better evaluation metrics than unbalanced datasets 
across all dataset proportions. This consistent superiority can be attributed to the equal distribution of class 
samples, which mitigates the risk of majority class bias and allows the model to learn representative patterns 
for all classes. In contrast, in unbalanced datasets, the number of samples per class is unequal, causing the 
model to become overly specialized towards the majority class. This leads to poor generalization on unseen 
data. Therefore, the experimental results show superior performance on each balanced dataset compared to 
unbalanced datasets, as shown in Figure 2-3. 
 

 

The bar plots in Figure 7 show a comparison of the evaluation metrics precision, recall, F1-score, ROC-AUC, and 
accuracy for different sizes of balanced datasets. Similarly, Figure 8 shows the metrics for corresponding 
unbalanced datasets. For easy visulization of the comparatively higher accuracy values than the other metrics, 
a secondary y-axis is used for better clarity. The plots show that larger unbalanced datasets, particularly at the 
75% and 100% proportions, tend to yield better overall performance. At these sizes, accuracy achieves the 
highest of 77.91%, while precision, recall, and F1-score values reach 0.78. 
 
Moreover, it is clear model performance is enhanced as the dataset size is enlarged, as seen from the results 
listed in Table 3. This is due to the fact that machine learning as well as deep learning models will tend to perform 
optimally when they are fed more data, as this enables them to learn patterns and generalize efficiently. The 
optimal performance of the model is achieved by using the 100% dataset, which gives a greater number of 
examples than the 75%, 50%, and 25% datasets clearly visible in Figure 7. 

 

Figure 7.Evaluation Metrics Comparison for Balanced CIFAR-10 Datasets at Different Proportions 
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Figure 8.Evaluation Metrics Comparison for Unbalanced CIFAR-10 Datasets at Different Proportions 

 

The other important finding of this study is that the size of the dataset is greater, and thus the training and 
testing time and memory usage increase. This result is expected because analyzing a greater amount of data 
necessarily requires more processing resources, i.e., time and memory, to process, train, and test models. 
The model will require more time and memory to perform these operations with more examples. Hence, the 
whole 100% dataset takes the greatest processing time and memory among the smaller 25%, 50%, and 75% 
datasets, as illustrated in Figure 8. 

Furthermore, testing with varied training and testing split ratios (50%-50%, 60%-40%, 70%-30%, 80%-20%, 
and 90%-10%) also demonstrated that the model performed optimally at a 70%-30% split, as indicated in 
Table 6 and Figure 5. This is because this split offers an even split with enough data for the model to learn 
adequately while having enough testing data to accurately measure performance without overfitting. With 
increased training ratios like 80%-20% and especially 90%-10%, there is a possibility of overfitting since the 
model becomes too specific to the training data, reducing its ability to generalize to new, unseen data. Lower 
ratios like 50%-50% and 60%-40%, on the other hand, leave the model with less data to learn from, reducing 
its ability to learn and hence performing worse compared to the optimal 70%-30% split. 
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Figure 9.Training and Testing Time Analysis Across Dataset Proportions for Balanced and Unbalanced 
Data 

Figure 10.Relationship Between Training/Testing Time and Performance Metrics Across 
Different Dataset Proportions 
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A comparison of training and test times for balanced and unbalanced datasets with varying dataset sizes is 
presented in Figure 9. Figure 10 also presents the correspondence between training/testing times and 
performance measures against different dataset ratios. The trends are seen to hold true, as indicated by Table 
4 and Table 6. In the plots, important evaluation metrics like Accuracy, Precision, Recall, and ROC-AUC are 
marked on the main y-axis, whereas the values for support are marked along a secondary y-axis. Dual y-axes 
utilize better clarity by scaling both smaller and larger values suitably so that the main metrics are easily 
readable while presenting the support values visibly along with them. 

 

It should be noted that the performance trends of GoogleNet in this study are  linked to the new features of its 
architecture. In contrast to other standard CNN architectures, GoogleNet contains Inception modules which 
enable the network to extract multi-scale features using parallel convolutions with various kernel sizes. This 
architecture enhances the capacity of the model to learn various patterns in an image but also renders the 
model class-imbalanced. In situations where over-sampling of some classes occurs, the multi-scale feature 
extractors will favor dominant class patterns at the expense of the model's capacity to generalize. But with the 
growth in the size of the overall dataset, minority class instances also grow, subjecting the Inception modules 
to a higher variety of patterns to learn. The non-proportional growth in data variety acts to counterbalance the 
learning process, reducing the majority class bias and improving generalization. Observe that this effect can 
be reversed in other architectures, like ResNet, which uses residual connections in deep sequential layers, or 
less complex models like VGG, which rely on simple sequential feature extraction routes. These architectural 
differences dictate the way models respond to problems like dataset size and class imbalance, and this leads 
to the performance trends observed in this work. 

7. Conclusion 

This research involved a series of experiments with GoogleNet pre-trained model to assess its performance on 
the CIFAR-10 data under varying conditions. The four dataset ratios (25%, 50%, 75%, and 100%) were tested 
under unbalanced and balanced datasets. The results always indicated that the model performed optimally 
when it was trained under balanced datasets regardless of the dataset size. Furthermore, the growth of the 
dataset size resulted in stepwise improvement in model performance, with optimum accuracy on the whole 
100% balanced dataset. The study also explored the effect of different training and test data ratios, including 
50%-50%, 60%-40%, 70%-30%, 80%- 20%, and 90%-10%. Among these, the 70%-30% ratio produced the most 
optimal results, offering a good balance of adequate training data and adequate test data to identify 
generalization. Generally, the results show that good model performance on image classification problems 
with GoogleNet is a function of a combination of a few important factors: use of a right balance and adequately 
sized dataset, proper hyperparameter tuning, and specification of right ratio for train-test split. 
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