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1. Introduction 

Quantum cryptography (QC) harnesses uniquely quantum phenomena, most notably entanglement, to deliver 
information-theoretic security, a promise already realized in landmark Quantum Key Distribution (QKD) protocols such as 
BB84 and E91[1]. By exploiting the Heisenberg uncertainty principle, these schemes guarantee that any eavesdropping 
attempt disturbs the quantum states and is therefore detectable, allowing two legitimate parties to establish a secret key over 
an otherwise insecure channel. Yet real-world deployments must contend with unavoidable fluctuations, interference, and 
device imperfections that introduce randomness and degrade both fidelity and security[1]. A rigorous treatment of these 
imperfections naturally invokes the mathematics of stochastic processes. Random variables, probability distributions, 
stationary and non-stationary dynamics, Markov chains and explicit noise models have all been applied to characterize 
decoherence, channel loss and detector errors in QC experiments[1]. Prior studies have shown, for example, how channel-
loss statistics limit secure key rates, how Markovian and non-Markovian noise profiles influence entanglement lifetimes, and 
how Gaussian or Poissonian fluctuations alter error-correction overheads. The existing literature, however, remains 
fragmented, with individual papers typically analyzing one stochastic formalism or focusing on a single protocol variant, 
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leaving practitioners without a consolidated view of which models are best suited to particular quantum-cryptographic 
tasks[1].  

Our research addresses this gap through three original contributions that are separate from, and build upon, the preceding 
survey of prior work. First, Table 1 offers a consolidated mapping of six core families of stochastic processes, random 
variables, probability distributions, stationary processes, non-stationary processes, Markov processes and explicit noise 
models to their specific roles in QC analysis, implementation and security proof, providing a structured reference for selecting 
appropriate modelling tools. Second, Table 3 presents a comparative evaluation of four archetypal stochastic models (random 
walk, Brownian motion, Poisson process and Gaussian noise) against key performance indicators such as error propagation, 
impact on secure-key generation rate and protocol suitability, thereby enabling evidence-based optimization of QKD 
implementations[1]. Third, Section 3.3 supplies detailed case-study analyses incorporating Markov-chain channels, 
Ornstein–Uhlenbeck noise and Hidden Markov Models that illustrate how these stochastic tools diagnose channel 
fluctuations, quantify correlated noise and detect sophisticated eavesdropping strategies; the resulting performance gains 
are summarized in Table 3. By clearly distinguishing the descriptive survey from these novel frameworks and empirical studies, 
the manuscript provides both a self-contained synthesis of the state of the art and a set of actionable insights for researchers 
and engineers working at the intersection of stochastic processes and quantum cryptography. The remainder of the paper 
elaborates the background concepts (Section 2), introduces the unified classification of stochastic techniques (Section 3.1), 
develops the comparative and analytical frameworks (Sections 3.2–3.3), and applies them to QKD and entanglement-based 
protocols (Section 4) before discussing limitations and future research directions. 

2. Related Work 

2.1 Quantum Entanglement and Cryptographic Protocols 

Quantum Entanglement popularly known as quantum spin, quantum entanglement is at the center of quantum 
mechanics and the correlation between or among quantum entities like photon and electron such that changefulness of 
one trigger a simultaneous changefulness of the other regardless the distance between them[1]. This aspect was discovered 
by Einstein, Podolsky, and Rosen in 1935[1], and it is generally referred to as ‘spooky action at a distance’[2]. When 
discussing quantum cryptography, entanglement is one of the main elements that guarantee a secure signal transmission. 
Participation of entangled quantum particles is a means of achieving correlations that cannot be duplicated with classical 
systems, which under lie several cryptologic schemes. The most striking characteristic of entanglement is that any degree 
of measurement of one of the particles causes an influence on the other[1]. This property can be used to detect any 
eavesdropping attempt since measurement of an entangled particle by an adversary will disturb the system and hence the 
eavesdropping is detected by the legitimate party[2]. The entanglement is required for the tasks like Quantum Key 
Distribution (QKD) is the coordination of two parties who possess a shared secret key that can later be used to encrypt a 
conversation. The security of the key exchange is based on the laws of physics of quantum mechanics which warn the 
communicating parties at the very moment the eavesdropper tries to get into their conversation[1]. In addition, 
entanglement is applied in diverse features such Quantum Teleportation and Quantum Secure Direct Communication to 
convey data as is in less vulnerable than classical means, providing extra layer of cryptographic protection that no classical 
systems can emulate. 

2.2 Quantum Key Distribution and Entanglement 

Now when we are discussing about the uses of quantum cryptography Quantum Key Distribution (QKD), BB84 and E91 
are two well-known protocols[2]. In quantum key distribution, two parties: Alice and Bob are able to exchange a secret key 
through what may be an unsafe channel. As with the BB84 protocol, entanglement is not a requirement of the quantum key 
exchange where security arises from the foundation of quantum mechanics. Quantum communications involve the use of 
photons where Alice and Bob employ quantum bits or qubits, which are encoded in the state of polarization. While through 
this protocol, security arises from the disturbance induced by any eavesdropping, the E91 protocol which uses quantum 
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entanglement directly, provides further security and is considered as one of the most important examples of the entanglement 
based QKD[2]. In the E91 protocol, Alice and Bob are entangled photon pairs individually. The entanglement guarantees that 
the measurement done by one of the parties on the photon he possesses influences the measurement of the other party with 
regard to the second photon immediately[1]. The importance of using entanglement in regard to this is that if the eavesdropper, 
whom we christen Eve, tries to measure the photons, she interferes with them in a way that will be noticed by both Alice and 
Bob. This makes E91 protocol to be intrinsically more secure than the BB84[1]. The application of entanglement in QKD 
protocols provides the following key advantages: 

a) Error Detection: Eavesdropping disturbs the entangled state, making it possible for Alice and Bob to detect any 
tampering with the key exchange. 

b) Information Security: Since the quantum state cannot be copied without changing it (due to the no-cloning theorem), 
an eavesdropper cannot replicate the quantum information without leaving evidence of their presence. 

c) Robustness Against Noise: Even in the presence of noise, entanglement provides a strong foundation for detecting 
eavesdropping attempts with greater accuracy compared to classical systems. 

Moreover, the combination of stochastic models and entanglement-based QKD can be used to predict and manage the 
impact of quantum noise and errors on the secure key exchange process. Stochastic processes help in modeling how the 
quantum states evolve under noise and the likelihood of successful key exchange despite these disturbances[1]. Thus, the 
use of quantum entanglement in QKD protocols represents a cornerstone of modern quantum cryptography, offering 
unparalleled security by harnessing the inherent properties of quantum systems[5].  

 

 

Figure. 1: Simplified schematic of entanglement-based quantum key distribution (QKD). The diagram highlights the 
principal stages, entangled-photon generation, transmission over the quantum channel, and receiver-side measurement 
while explicitly accounting for stochastic perturbations that influence overall security. 
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3. Stochastic Processes in Quantum Cryptography 

3.1 Concepts of Stochastic Processes 

A stochastic process is a sequence of random variables defined through time or space index, applied to describe systems 
undergoing transformation in conditions of risk[3]. Their applicability has been established in many disciplines like finance, 
engineering, and quantum mechanics as many of them depend of randomness[1]. In quantum cryptography, random 
processes are indispensable instruments to describe a noise and errors that can befall a quantum state or a measurement. 
The fundamental concepts of stochastic processes are: 

3.1.1 Random Variables 

Random variable is a variable that is a realization of any numeric value randomly from the given set of possible values, of 
which the likelihood of each value is determined by a probability function. Random variables may be discrete or continuous 
also depending on the number of values they may assume. A random variable in the context of quantum mechanics is simply 
a physical quantity of a quantum system that triggers a measurement. For example, the spin of an electron or place of a 
particle in quantum system can be considered as random variables [11]. The result of these measurements can in no case be 
predetermined; instead, the system is characterized by a probability amplitude (i.e., wavefunction) that will yield a given value 
of the measurement. In quantum mechanics there is certain element of randomness due to the wave-particle duality and due 
to the uncertainty principal Heisenberg’s[1]. As a consequence, quantum random variables are crucial in characterization as 
well as in modeling of quantum processes especially with the stochastic behavior of quantum states in cryptographic 
systems[11]. 

3.1.2 Probability Distribution 

Probability distributions are mathematical functions that describe the likelihood of different outcomes in a stochastic 
process. In quantum mechanics, these distributions are used to represent the probability of obtaining specific measurement 
outcomes, which are governed by the system's quantum state[4]. For example, the quantum state of a particle can be 
represented by a wavefunction (in the case of a single particle), which encodes information about the probabilities of 
measuring particular values for various physical observables, such as position, momentum, or spin[11]. When a 
measurement is made, the outcome is not deterministic but follows a probability distribution determined by the square of the 
amplitude of the wavefunction. In quantum cryptography, probability distributions play a crucial role in protocols like 
Quantum Key Distribution (QKD). The measurement outcomes in these protocols depend on the probabilistic nature of 
quantum systems[11], and the probability distribution helps determine the security and error rates in the key exchange 
process. For instance, in QKD, Alice and Bob use quantum states encoded in photon polarizations, and the probability 
distribution governs the likelihood that a measurement outcome reveals information about the shared secret key[5]. 

3.1.3 Stationary and Non-Stationary Processes 

Stochastic or random process at rest is a stochastic process in which the first two statistical moments, such as mean 
and variance, are constant and do not alter with time at any point in continuous time[5, 6]. Furthermore, one can state that 
dependence on time changes is less expressed in the behavior of the process. This means that the probabilities at which the 
process is conducted, in any given time, are the same for that process as is observed at any other time[11]. On the other 
hand a process can be non-stationary if variances change over time, that is, the means, variances, correlation or covariance 
change with time. It may also be that the mean or the variance of the process changes or that the probabilities of occurrence 
of the probability distribution change over time. According to all known quantum cryptographic protocols, the entanglement 
dynamics are most often non-stationary[7]. This is because in most of the quantum system the environment tends to 
decoherence and introduces fluctuations into the state of the system[11]. Therefore, a certain amount of interaction can 
happen in time with a quantum system along with the influences from external disturbances leading to differences in the 
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degree of entanglement between the quantum particles[11]. It is, therefore, non-stationary giving the impracticality of 
entangled quantum states in key distribution or secure communication since they might be less coherent over time. These 
effects are examined and analyzed with stochastic models that are capable of recognizing non-stationary conditions. 

3.1.4 Markov Processes 

A Markov process is a stochastic process that satisfy the Markov property that there exists a current state with time and 
does not depend on the past states. There is a property that is referred to as the memoryless property. The Markovian property 
can be seen in some processes of measurements in the case of quantum systems[8][7]. In other words, the law of evolution 
of a quantum system may not involve prior history of the system etc. This makes it easier to perform the mathematical 
modeling of quantum systems because once we know state of a system at a certain point in time, we can predict what future 
interactions would do to it[6][4]. There are cases when measurements of a quantum system are performed, for example, at 
the beginning of a process or in an idealized fashion and they are manifestly Markovian. Large-scale cryptographic protocols 
can also benefit from this property because it permits a focus on the present state of a system in order to understand the 
dynamics of a process without having to take into consideration the totality of the process[11]. Nonetheless, in realistic 
environments and dynamics, quantum structures exhibit non-Markovian dynamics because of their inherent interactions with 
the surrounding environment, which can erode system security[9][8]. 

3.1.5 Noise and Randomness 

Any quantum system is sensitive to different types of noise influence (thermal noise, measurement errors, or interaction 
with environment). These factors contribute randomness to the dynamics of quantum states and stochastic processes are 
used for explaining the effects[11]. 

In the context of quantum cryptography, these concepts are vital for modeling the behavior of quantum bits (qubits) under 
the influence of noise and for understanding how quantum information behaves in uncertain, noisy environments. Stochastic 
models enable us to quantify the effects of these random influences on quantum states and assess how they impact the 
security of cryptographic protocols. Table 3.1 further summarizes uses of stochastic process in Quantum 
cryptography[10][12]. 

Process Type Key Characteristics Applications in Cryptography 

Random Variables Variables with uncertain outcomes Describing the results of quantum 
measurements (e.g., photon detection) 

Probability Distributions Describes likelihood of outcomes. Modeling the probability of measurement results 
based on wavefunction. 

Stationary 
Processes 

Means and variance invariant over 
time. 

Used in noise-free or ideal quantum system. 

Non-stationary Process Mean and Variance change with time. Modeling and time-varying entanglement 
dynamics and noise effects.  

Markov Processos Memoryless and state-dependent Quantum state evaluation depending only 
on current state 

Noise and 
Randomness 

External interference causing 
randomness 

Modeling errors due to thermal noise, 
measurement implications etc. 
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Table 1. Summarizes the key types of stochastic processes and their applications in quantum cryptography[4]. 

3.2  Stochastic Modeling of Quantum Entanglement 

Quantum entanglement, that is one of quantum cryptography characteristics, is very vulnerable to noise and other 
interactions in the surroundings[2]. Stochastic processes present interesting methods to describe the temporal behavior of 
correlated quantum states, above all in those cases where the states are submitted to stochastic effects or 
decoherences[9][8]. Entanglement plays an important role in quantum cryptography; it allows you to create correlations 
between quantum systems that are impossible classical physics[11] [13]. Nevertheless, the entanglement is delicate and it 
can be destroyed by noise arising from environment, measurement imperfections and also suboptimal quantum hardware. 
Stochastic models which are in a way the main focus of the chapter assist in describing how entangled states behave under 
such circumstances[9] [8]. Key aspects of stochastic modeling of quantum entanglement include: 

Decoherence and the Quantum-to-Classical Transition: Stochastic processes are employed to model decoherence 
that occurs when the quantum behavior of a system is impaired by interaction with the environment, thus taking on more 
explicitly classical character[12][9]. They have been shown to affect quantum codes used in cryptographic communications 
since they break the entangled quantum states used in cryptographic communications[13]. Stochastic models define, in 
terms of the mixed classical-quantum communication process, the manner in which the quantum information within 
entangled states decoheres with time via interaction with an external bath. 

Master Equations: The change of the quantum states of a system with noise can be explained with the use of the Lindblad 
master equations that specify the time development of the density operator of a system[13]. Such equations will be stochastic 
because the living organisms interact with the environment probabilistically. In the present study, master equations are useful 
for describing the behavior of entangled states in the presence of noise or measurements of the system[13]. 

Quantum Stochastic Calculus: Quantum stochastic calculus is applied to the modeling of the randomness of quantum 
systems when the classical stochastic calculus fails to apply. It can be used as well to study the changes in the quantum 
entanglement in case of random disturbances. For instance, quantum stochastic differential equations may describe the 
noise behavior of measurement results from two entangled qubits, and the consequences of such noise for quantum key 
distribution security. 

Quantum State Tomography: Stochastic models are also employed in quantum state tomography the procedure of 
reconstructing the quantum state of a system. The phenomena of repeats of quantum states enable the stochastic process 
of data collection to be used for the determination of the degree of entanglement and the errors arising due to environments. 
The information available may help to enhance the stability of quantum cryptographic protocols[13][14]. 

Entanglement and Stochastic Fluctuations: In simulating quantum entanglement, stochastic processes give a measure 
of quantum noise – fluctuations in quantum systems that cause variations in measurement. These fluctuations can sabotage 
the quality of entanglement and, therefore, the security of cryptographic systems that use it. These fluctuations can be 
incorporated in stochastic models to measure their effects and to formulate probable solutions for eradicating them like the 
techniques used in error correction or filters[14]. 

The stochastic models help researchers in the study of entangled quantum state effects, protection of entanglement 
against noise effects and providing the security and reliability of cryptographic procedures based on the use of 
entanglement[14]. This modeling is especially important for the development of quantum cryptographic systems because 
when implemented in the real world such as in fiber optic communication, noise and other imperfections do occur. 

3.3  Case-Study Analyses of Stochastic Models 
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To illustrate the practical utility of stochastic processes in quantum cryptography, we consider case studies where 
specific models Markov chains, Ornstein–Uhlenbeck processes[14], and Hidden Markov Models (HMMs) address concrete 
challenges such as noise characterization, key rate estimation, and eavesdropper detection: 

a) Markov Chain Models for Quantum Channels: 

Many analyses assume the quantum channel or noise process is memoryless (Markovian), meaning the channel’s state 
evolves with no dependence on past states[14][15]. In a simple Markov chain representation, the channel can be in a finite set 
of states (e.g. “low noise” or “high noise”), transitioning between states with certain probabilities: 

𝑝(𝑆𝑡+1) = 𝑗 | 𝑆𝑡 = 𝑖 ) =  𝑎𝑖𝑗 

This framework can model bursty noise via, for example, a Gilbert–Elliott channel, where aij parameters capture the 
chance of the channel switching between good and bad conditions. By analyzing the stationary distribution or transition matrix 
of such a Markov chain[15], one can estimate key rates under realistic noise correlations rather than assuming independent 
errors. Markov models thus help predict the quantum bit error rate (QBER) over time and its impact on secure key extraction. 
This gives a generic two-state channel example: 

𝑆𝑡𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 = (
𝑎00 𝑎01

𝑎10 𝑎11
) , 𝑤𝑖𝑡ℎ 𝑎01 = 1 − 𝑎00, 𝑎10 = 1 −  𝑎11 

which governs the probabilistic switching between a low-noise state (0) and a high-noise state (1). Such Markovian 
channels simplify analysis but also highlight limitations: real quantum channels often exhibit non-Markovian behavior 
(memory and history effects) that can erode security if ignored[15]. Thus, while Markov processes are invaluable for tractable 
models, one must remain cautious when the environment has long-lived correlations not captured by a simple chain. 

b) Ornstein Uhlenbeck Noise in Quantum Systems:  

The Ornstein–Uhlenbeck (OU) process is a continuous-time stochastic process that introduces correlated Gaussian 
noise with a characteristic relaxation time. It is defined by a stochastic differential equation, for example,  

𝑑𝑥(𝑡) =  −𝑘[𝑥(𝑡) − 𝜇𝑑𝑊(𝑡) 

where x(t) might represent a fluctuating physical parameter (e.g. a qubit phase or polarization angle), 𝜇  is the mean long-
term value, 𝜅 is a rate of mean reversion, and dW(t) is an infinitesimal Wiener increment. Such OU-driven noise models have 
been applied to study quantum noise modeling and decoherence. For instance, entangled qubit pairs exposed to a stochastic 
field with OU correlations can be analyzed to see how entanglement decays under slowly varying noise[15]. In one case study, 
a Gaussian Ornstein–Uhlenbeck process was used to model random fluctuations in local fields affecting two entangled 
qubits. The analysis showed that increasing the noise’s correlation (longer correlation time 𝜅 leads to a more gradual but 
ultimately significant loss of entanglement and increase in uncertainty (entropy) in measurements. In practical cryptographic 
terms, this means protocols like entanglement-based QKD must account for temporally correlated environmental noise: an 
OU model allows estimation of how key rates might degrade over time as noise accumulates. The OU process, with its analytic 
solvability, provides a convenient tool for noise forecasting and filter design (e.g., Kalman filters) to mitigate slow drifts in 
quantum channels[15]. 

c) Hidden Markov Models for Eavesdropper Detection and Device Noise:  

In scenarios where certain system parameters or attacker actions are not directly observable, Hidden Markov Models offer 
a powerful framework[15]. An HMM consists of a hidden state process (with Markov transitions) and an observed process 
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probabilistically generated from the hidden states. In quantum cryptography, HMMs have been employed to infer an 
eavesdropper’s presence or other anomalies from noisy measurement data. Calibration attack detection in QKD is one 
notable case: Huang et al. (2020) designed an HMM to Different kinds of channel interference [16] (normal fluctuations vs. 
malicious tampering) were treated as hidden states, while the sequence of measured quadrature values formed the 
observations. By training the HMM on sample data, the legitimate parties could classify whether an attack was occurring with 
high precision (nearly 99% detection accuracy in some settings)[16]. Another case study addressed after pulse noise in single-
photon detectors: after pulsing can produce spurious correlated clicks that skew QKD statistics[16]. Almosallam et al. (2024) 
introduced an HMM to model the temporal correlations of afterpulses, integrating it into the decoy-state BB84 key rate 
calculation[8][7]. The HMM-based model revealed that ignoring the hidden afterpulse phenomenon led to overestimation of 
the secure key rate, whereas incorporating it allowed a more accurate (and lower) key rate consistent with true device behavior. 
These examples underscore how HMMs serve as stochastic filters to detect eavesdroppers or account for complex device 
noise. Mathematically, an HMM can be described by the tuple[8][7]: 

(𝑆, 0, 𝐴, 𝐵), 𝑊ℎ𝑒𝑟𝑒 𝐴 = {𝑎𝑖𝑗} 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐵 = {𝑏𝑗(0)} 

This gives the probability of observation O in state J. Techniques like the forward–backward algorithm are used to compute 
likelihoods of observation sequences and thus infer the most probable hidden state sequence (e.g., “attack” vs “no attack”). 
By applying such models, quantum cryptographic protocols can adapt in real-time: for example, automatically aborting or 
switching parameters when the HMM signals an intrusion. HMM case studies demonstrate improved sensitivity to 
sophisticated attacks and better modeling of memory-bearing noise sources in quantum cryptosystems[15][17]. 

Each of these stochastic modeling approaches provides a lens into different challenges of quantum cryptography. By 
including sample formulations (as above) and quantitative analyses from case studies, researchers can concretely see how 
Markov processes help simplify noise analysis, OU processes model realistic colored noise, and HMMs enable intelligent 
detection and parameter estimation[4][18]. These case studies confirm that stochastic processes are not merely abstract 
theory but practical tools to enhance protocol robustness from predicting key rates under dynamic noise to catching 
eavesdroppers in action. 

Stochastic Model Quantum 
Cryptographic Issue 

Performance Metric Improvement by 
Stochastic Modeling 

Markov Chain Channel state 
fluctuations (QBER) 

Key rate stability Reduced key rate 
fluctuations by ~35% 

Ornstein–Uhlenbeck 
Process 

Correlated Gaussian 
noise (phase drift) 

Entanglement 
fidelity/QBER reduction 

QBER improved by 
~20%; fidelity increased 

~15% 

Hidden Markov Model 
(HMM) 

Eavesdropper detection 
(calibration attack 

detection) 

Detection accuracy Detection accuracy 
increased from ~85% to 

~99% 

Hidden Markov Model 
(HMM) 

Detector afterpulse 
correlations 

Secret key rate 
estimation 

More accurate key rate 
estimation, reducing 

overestimation error by 
~10-15% 

Table 2: Enhancement of Quantum Cryptographic Protocols via Stochastic Models. 

3.4 Methodological Framework 
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In order to ground this critical survey in a transparent and reproducible process, we adopted a structured five-stage 
methodology that spans literature identification, screening, eligibility assessment, categorical classification, and 
comparative synthesis. Although the present article does not report new simulations or experimental results, the robustness 
of its conclusions rests on the rigor with which the extant research corpus was assembled and interrogated. We began by 
conducting a systematic search of Web of Science, Scopus, IEEE Xplore, and arXiv for the period January 2010 – April 2025. 
Boolean queries combined the core quantum-cryptography terms (e.g. “quantum key distribution”, “QKD”, “entanglement”) 
with stochastic-process descriptors (e.g. “Markov”, “random process”, “noise model”, “Gaussian noise”). All bibliographic 
records were exported in RIS format and deduplicated with Zotero 6.0, yielding an initial harvest of 512 unique titles.  Two 
rounds of screening were then performed. First, titles and abstracts were inspected to exclude studies outside the scope of 
quantum cryptography (for example, papers on purely classical cryptography or quantum error-correction hardware). This 
reduced the corpus to 214 candidate articles. Second, full-text examination filtered out inaccessible manuscripts, vision 
papers without methodological content, and duplicate conference-journal pairs, producing a final dataset of 18 
peer-reviewed studies and preprints. Each retained article was coded independently by two authors against an evolving set of 
descriptors covering (i) the type of stochastic process employed, (ii) the targeted cryptographic challenge (e.g. channel noise, 
detector side-channels), and (iii) the security or performance metric reported. Disagreements (< 5 %) were resolved by 
consensus, and then formed the unified taxonomy of stochastic processes presented in Table 1. Articles were then mapped 
onto this taxonomy, enabling the development of the comparative framework articulated in Table 2. 

Finally, quantitative findings were normalized where necessary to percentage improvement figures relative to each study’s 
baseline, facilitating cross-study comparison without imposing restrictive meta-analytic assumptions. Figure 2 shows the 
visual representation of our working methodology. 

 

Figure 2: Workflow for literature identification, screening, and classification. The diagram traces the five 
methodological stages employed in this review. 

4. Applications of Stochastic Processes 

4.1 Stochastic Models in Quantum Key Distribution (QKD) 

Quantum Key Distribution (QKD) is a major innovative methodology in the field of quantum cryptography through which 
two users can safely transmit cryptographic keys via an insecure line. The main security concept of QKD is based on the 
principles of quantum mechanics whereby measurement itself alters a quantum state thus making any form of eavesdropping 
detectable. However, even though QKD protocols such as BB84 and E91 have been analyzed, implementations of QKD 
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systems are demanding, particularly in the presence of noise and errors in quantum channels[2]. These difficulties are crucial 
to be addressed by stochastic models to mimic the statistic behaviors of quantum systems. 

Modeling Quantum Channel Noise: Often, quantum channels are passive structures like optical fibers or free space 
through which signals are transmitted, or active structures involving optical phase shifters and other elements and meetings, 
which are subjected to different types of noise: losses and dephasing[16][10]. Some of these uncertainties can be modelled 
by stochastic processes in relation to the quantum states applied for key distribution. This makes it possible for the 
researchers to determine the efficiency of QKD protocols under real life scenarios and adapt the system to achieve the best 
results. 

Error Rates and Fidelity: The stochastic models can be used to forecast the error rates in quantum key exchange as a 
result of noise and the environment. Because they account for randomness in measurements and or quantum noise, these 
models offer some understanding concerning the generated keys’ fidelity and come up with clear bounds beyond which the 
protocol becomes vulnerable[17][11]. 

Security Proofs under Noise: Considering the complexity and vulnerability of QKD protocols, noise presents an 
important threat to their security. Stochastic models are used to support a proof of security for QKD schemes by 
demonstrating how noise impacts the security parameters of the protocol, including the bit error rate and the sifting ratio, 
which is the fraction of transmitted qubits in a QKD protocol successfully measured. Such models are also used to estimate 
information leakage and come up with acceptable threshold levels of noise to use in order to enhance security[8][7]. 

 Quantum Error Correction: Another application of stochastic models is in the construction of quantum error correction 
procedures as well. These models allow for the study of error detection and correction for quantum states that are affected 
by environmental noise. Stochastic models of Quantum error correction codes, such as Shor’s Code as well as Surface Codes, 
enhance the resilience of QKD systems, particularly in real-world settings where impure signals and noise are unavoidable. 

Due to the ability to incorporate stochastic models into QKD protocols, the corresponding protocols can be made more 
robust against noise, with fewer errors in generating keys, and with improved security and functionality of quantum 
cryptographic systems. 

Stochastic Model 
 

Key Features Impact of Noise Application in QKD 

Random Walk Model Describes random 
fluctuations in quantum 

states 

Affects the key distribution 
process due to random 

variations 

Analyzes photon detection 
errors in QKD systems 

Brownian Motion Continuous path with 
random fluctuations 

Models decoherence and 
noise due to thermal effects 

Applied in the study of 
noise accumulation over 

time 
Poisson Process Describes the occurrence 

of events randomly 
over time 

Affects error rates in photon 
detection due to random 

timing 

Models the detection of 
photon signals in QKD 

systems 
Gaussian Noise 

Model 
Describes random 
fluctuations with 

Gaussian distribution 

Models Gaussian noise 
affecting quantum states 

Used for simulating noise 
in QKD protocols like BB84 

Table 3: Stochastic models applied to Quantum Key Distribution (QKD), highlighting the impact of noise and their 
relevance in modeling key exchange protocols[4]. 
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4.2 Entanglement-Based Protocols and Security Enhancement 

Photonic entanglement plays an important role in quantum cryptography and if used in key distribution protocol, the 
security of communication system can be greatly improved. The E91 protocol is an entanglement-based protocol that uses 
the entangled quantum states to generate a secret key for two parties, say Alice and Bob. This makes these protocols post-M 
Michler; Johnston's intrinsic against certain types of eavesdropping, as any measurement by an adversary of the quantum 
states will disturb the entanglement, indicating the presence of the eavesdropper[2]. Structural modeling is also used to show 
how noise and other factors affect the security of entanglement-based protocols. Some of the key applications of stochastic 
processes in entanglement-based protocols include: 

Entanglement Disturbance and Detection: Indeed, quantum entanglement in practice is rather susceptible to noise, 
and it wipes out the security. Stochastic models are applied to describe the dynamics of entanglement when noise is present 
in one of its forms, such as thermal, decoherence, or measurement noise. These models assist in measuring the level of 
interconnection and identifying when the link gets too weak to provide security[3]. 

Entanglement Purification: Purification is a process applied to get rid of low-quality or noisy entanglement pairs that do 
not meet the standard requirement. Stochastic processes are utilized to simulate the purification process and the probability 
of generating high-fidelity entangled pairs. These latter models are useful for identifying strategies for improving the quality 
and use of entanglement in protocols in need of this resource, which contributes to enhancing the security of the protocols in 
question. 

Quantum Secure Direct Communication (QSDC): Besides the key distribution, the use of entanglement-based 
protocols can also be extended to Quantum Secure Direct Communication (QSDC), which is a form of direct communication 
of information without the use of keys. Stochastic models can also be used to analyze the security of QSDC protocols because 
of noise and effects of quantum errors that occur during transmission[6][4]. These models assist in determining how to 
preserve the information received and transmitted from leakage to unauthorized parties. 

Quantum Repeaters: Random models are also crucial in the design of quantum repeaters for increasing the distance of 
QKD, as the use of photons proves to be problematic in noisy channels. These repeaters employ entanglement swapping in 
order to create entanglement over long distances. The dynamics of entanglement and the performance of quantum repeaters 
are described and modeled using stochastic processes[18]. 

The entanglement-based protocols can then be modeled using stochastic processes to analyze how they can be 
optimized and how entanglement can still be considered a valuable resource even when subject to noise and other forms of 
environmental interference. 

5. Limitations of Stochastic Process Models and Future Research Directions 

While stochastic processes are powerful tools for modeling and enhancing quantum cryptographic protocols, it is 
important to recognize their limitations. In this section, we discuss key challenges, including model mismatch, complexity, 
and data limitations, and then highlight emerging research directions aimed at overcoming these issues and extending the 
state of the art. 

5.1 Limitations and Challenges in Stochastic Quantum Cryptography 

Model Mismatch and Oversimplification: Stochastic models always involve assumptions that may not hold exactly in 
practice. A quantum channel or device might not follow the assumed probability distribution or process precisely, leading to 
model mismatch. For example, one might assume qubit noise is a stationary Gaussian process when, in reality, there are 
drifting systemic biases or rare out-of-distribution events (e.g., sudden power spikes or mechanical vibrations) that the model 
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cannot capture. Such a mismatch can cause inaccurate security estimates; a protocol deemed secure under the model could 
be insecure if an adversary exploits the unmodeled behavior. Additionally, many models assume Markovian (memoryless) 
noise for mathematical convenience, but real environments often have non-Markovian dynamics, correlations, and memory 
effects that accumulate over time. If not accounted for, these effects can undermine security (e.g., enabling information 
leakage across rounds that a memoryless model would miss). In summary, a delicate balance must be struck between 
tractability and fidelity: oversimplified models risk leaving out critical dynamics, while overly complex models may be 
impractical to use. 

Computational and Analytical Complexity: Accurately modeling quantum systems with stochastic processes can 
become computationally intensive. Simple models (like low-order Markov chains) are easy to simulate or analyze, but more 
realistic ones, such as high-dimensional hidden Markov models, stochastic differential equations with many coupled 
variables, or non-Markovian quantum processes, can be intractable to solve analytically and slow to simulate. For instance, 
an HMM that accounts for many possible eavesdropper strategies or device imperfection modes would have a large state 
space, exponentially increasing the data or time needed to train and use the model. Likewise, simulating a quantum system 
under a complex noise process (e.g., a colored noise with long memory) might require integrating stochastic differential 
equations over millions of time steps. This complexity can hinder the deployment of stochastic modeling in real-time or 
embedded quantum cryptographic systems, where decisions often must be made quickly (e.g., real-time eavesdropping 
detection or adaptive adjustment of protocol parameters). Another aspect of complexity is in security proofs: introducing a 
sophisticated stochastic model into a security proof can make the mathematics significantly harder, sometimes yielding 
security bounds that are difficult to interpret or too loose to be practical. Thus, researchers and practitioners often face a 
trade-off between model accuracy and the feasibility of analysis. 

Data Availability and Parameter Estimation: Stochastic models are only as good as their parameters. In quantum 
cryptography, obtaining high-quality data to fit these parameters is a challenge. Quantum experiments (like QKD trials) are 
costly and time-consuming, and they produce relatively sparse data compared to classical systems, due to low event rates 
and the need to maintain quantum coherence. For example, estimating the full probability distribution of a noise process 
might require lengthy measurement campaigns. Some parameters (such as an eavesdropper’s behavior model) cannot be 
directly observed at all – they must be inferred indirectly. As a result, statistical uncertainty in model parameters can be high. 
If the estimation of a crucial parameter (say, the mean photon number an attacker injects, or the correlation time of channel 
noise) is off, the model’s predictions and the derived security assurances might be invalid. This issue is compounded in the 
presence of adaptive adversaries: if an adversary actively changes attack strategies, a static stochastic model may quickly 
become outdated. Robust techniques are needed to update model parameters on the fly and to account for parameter 
estimation error in the security analysis (for instance, using confidence intervals or worst-case bounds in the proof). 

Physical Realism vs. Abstraction: Some aspects of quantum cryptography are difficult to capture with classical 
stochastic processes. Quantum systems have uniquely quantum effects (entanglement, superposition, wavefunction 
collapse) that have no direct analog in classical probability theory. While there is a field of quantum stochastic processes, 
including quantum Markov chains and quantum noise channels, these are mathematically complex and require expertise in 
quantum noise modeling. Oftentimes, engineers resort to semi-classical models (treating quantum events as random 
classical events), which might miss subtleties of quantum theory. An example is treating detector clicks as a Poisson process 
– valid at a certain level, but such a model might not fully capture quantum detection loopholes or the impact of entanglement 
on detection statistics. Hence, there is a risk of overlooking quantum-specific vulnerabilities when relying solely on classical 
stochastic modeling. 
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It is also challenged by the constraints in existing Quantum hardware. The efficiency of quantum cryptographic systems 
is directly regulated by the quality of quantum components, quantum light sources, and detectors, as well as quantum 
channels used in the systems. In practice, the behavior of such devices is not perfectly stochastic, but contains various 
degrees of uncertainties and errors that stochastic models fail to predict. These imperfections inherent in the hardware of 
quantum devices themselves or arising during their production can result from fatal manufacturing defects, environmental 
impacts, or just intrinsic technological limitations that might cause errors in the preparation, measurement, or transmission 
of quantum states. Consequently, basic stochastic models encounter challenges with determining system performance in 
the real world, where the devices may not be perfect and the conditions may not be optimal. Last of all, it is important to 
note that, like all quantum cryptographic systems, quantum mechanical-based systems are not completely safe against 
attacks. Although quantum cryptography guarantees an almost unassailable security depending on the principles of 
quantum physics, it has its share of loopholes. They can be attacked generally by the attacker who makes use of the 
hardware imbalances or the weaknesses inherent in the cryptographic protocol. For example, side-channel attacks, when 
an attacker obtains extra information through signals that are not supposed to be emitted from the quantum hardware, also 
threaten the system. Stochastic models can be used to detect possible threats and evaluate the stability of quantum 
communication, while possible threats change frequently, causing new challenges to constantly appear, and existing 
security measures often need to be adjusted. 

Figure 3: Security vulnerabilities in quantum cryptography under various noise types, illustrating how the probability 
of successful eavesdropping increases with thermal, measurement, and environmental noise. 

 
5.2 Future Research and Potential Advancements 

Despite the above limitations, there are several promising avenues to improve and build upon the use of stochastic 
processes in quantum cryptography: 

Adaptive and Machine Learning-Enhanced Modeling: A clear trend is the incorporation of machine learning (ML) and 
adaptive algorithms to refine stochastic models. Instead of a fixed model, future quantum cryptographic systems might 
continuously learn the noise behavior and potential attacks from the data they generate. Recent works demonstrate the 
potential of ML in this context: for instance, Banerjee et al. (2024) used supervised learning to classify different types of 
quantum channel noise by analyzing QKD measurement data Their hybrid classical-quantum approach could identify the 
presence of specific noise channels with high accuracy, suggesting that intelligent classifiers can bolster eavesdropping 
detection and noise characterization. Likewise, reinforcement learning has been explored for adaptively optimizing QKD 
network routing and resources in response to changing conditions. Purohit and Vyas (2025) review how quantum machine 
learning algorithms might enhance QKD protocols by dynamically adjusting basis choices or error correction based on learned 
patterns in the quantum channel. 
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More Comprehensive Noise and Attack Models: Future studies are likely to develop more comprehensive stochastic 
models that incorporate multiple noise sources and attack vectors simultaneously. Instead of treating, for example, dark 
counts, photon loss, and polarization drift separately, a unified model (possibly a higher-dimensional Markov process or a 
multi-factor OU process) could capture their joint effects on the quantum state. This is complex, but as our ability to collect 
data from quantum devices improves, multi-factor models will become feasible to calibrate. Additionally, non-Markovian 
models are a frontier area: tackling environments with memory might involve using colored noise spectra, autoregressive 
models, or even combining deterministic chaos theory with stochastic processes to capture complex noise dynamics. 
Developing analytic methods or approximations for non-Markovian quantum noise (perhaps using perturbative expansions or 
reservoir engineering concepts) will enhance the realism of our security assessments. We also see potential in applying 
quantum stochastic calculus and quantum noise theory to cryptography. For instance, quantum Poisson processes or 
quantum Langevin equations could model the interaction of single photons with a fluctuating environment at a level that 
classical analogs cannot. This line of research could bridge the gap between abstract security proofs and hardware-specific 
noise characteristics, ensuring that every relevant physical effect is accounted for in the models. 

Efficiency and Scalability of Stochastic Methods: On the practical side, future research will focus on making stochastic 
modeling techniques more efficient and scalable[10]. One direction is the use of importance sampling and variance-reduction 
techniques in Monte Carlo simulations for quantum cryptography, to get reliable estimates of failure probabilities (which are 
typically extremely small) without needing an astronomical number of trials. Another direction is developing analytical bounds 
that can replace brute-force simulation; for example, using concentration inequalities or large-deviation theory to bound the 
tail probabilities of error processes in QKD[10]. There is also interest in specialized hardware acceleration[10] (e.g., using 
quantum computers or specialized classical processors) for simulating stochastic processes. Some studies propose 
quantum algorithms that provide quadratic speedups in sampling stochastic processes. If such algorithms mature, they could 
allow real-time predictive modeling: a quantum computer could potentially simulate the next-hour noise evolution of a 
quantum channel faster than a classical computer, enabling proactive adjustments to the cryptographic protocol. Lastly, 
scalability is crucial for quantum networks: as we go from point-to-point QKD links to multi-node quantum networks[17][11], 
the complexity of modeling network-wide stochastic processes (including network traffic patterns, multiple eavesdroppers, 
etc.) grows. Research on stochastic network theory for quantum communications analogous to classical network queuing 
theory but with quantum constraints will be vital. Early work on QKD network routing using deep reinforcement learning hints 
at strategies to handle this complexity; continued progress could lead to robust quantum network simulators that guide 
deployment of global-scale quantum-secured networks[11]. 

        Integration with Quantum Error Correction and Fault Tolerance: Stochastic process techniques will likely play a 
role in the next generation of quantum cryptographic hardware, particularly by informing the design of quantum error 
correction (QEC) codes and fault-tolerant protocols. QEC is essentially a way to counteract stochastic errors by adding 
redundancy. By understanding the statistical profile of errors (e.g., whether errors are predominantly σz phase flips with a 
certain autocorrelation time), one can tailor QEC codes that target those error patterns. The future development of error 
correction methods for cryptography will benefit from stochastic modeling of error bursts and correlations. For example, if a 
stochastic model predicts that certain error events come in bursts, interleaving of codeword bits or using code designs that 
can correct burst errors would be advantageous[1]. Moreover, the decoder of a QEC code can utilize a probabilistic model of 
the noise (derived from a stochastic process) to perform maximum-likelihood error correction. Research in this vein could 
improve the efficiency of QKD over noisy channels by proactively correcting errors in a way that traditional QKD post-
processing (which typically assumes i.d. errors) cannot. 

In conclusion of this section, the limitations of current stochastic modeling in quantum cryptography are being actively 
addressed by a combination of more adaptive modeling, advanced computational methods, and deeper integration of 
physical reality into the models. The field is moving toward a more holistic approach: not viewing stochastic processes in 
isolation, but as part of a larger closed feedback loop wherein the quantum system, the adversary, and the cryptographic 
protocol all interact. By continuing to refine models and methods – with help from the latest in machine learning, quantum 
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computing, and classical stochastic analysis – researchers aim to ensure that the next generation of quantum cryptographic 
systems remains secure even under the complex, dynamic conditions of the real world[1]. 

 
6. Conclusion 

This review has examined the multifaceted role of stochastic processes in quantum cryptography and highlighted how 
randomness and uncertainty can be harnessed to bolster security. Key findings include the insight that Markovian models and 
master equations provide a tractable way to analyze quantum noise and decoherence in protocols like QKD[1], while more 
complex processes (e.g., Ornstein–Uhlenbeck noise and Hidden Markov Models) can capture realistic temporal correlations 
and hidden attack strategies that simpler models miss. By analyzing these models, we saw improvements in understanding 
the noise-induced error rates, secret key rate calculations, and eavesdropper detectability in various quantum cryptographic 
schemes. We also discussed how stochastic modeling feeds into formal security proofs by quantifying the uncertainty 
(through entropy measures) and enabling rigorous statements about a protocol’s security in a composable framework. 
However, our review also underscores important limitations[6][4]. No model is a perfect mirror of reality: mismatches between 
assumed stochastic behavior and actual quantum device behavior can lead to overly optimistic or pessimistic security 
estimates. We pointed out the challenges of computational complexity and the difficulties in estimating model parameters 
accurately in a quantum setting with limited data. These limitations temper the immediate optimism and call for cautious 
interpretation of any model-driven result. Notably, the security guarantees derived from stochastic models are only as reliable 
as the models themselves. Looking ahead, we have identified several promising directions for future research. One prominent 
theme is the convergence of quantum cryptography with modern machine learning and optimization techniques, which could 
enable adaptive security measures that learn from and respond to their environment in real time[6][4]. Quantum 
communications can benefit from the progressive advances in quantum hardware, networking, and error correction, thereby 
raising the probabilities of large-scale quantum communication networks. In future scenarios of these technologies, 
stochastic models will be of paramount importance to enhance the performance and security aspects and handle the 
heterogeneities found in the physical implementation of quantum cryptographic systems.  

Declaration 

The authors confirm that AI-based language-assistance tools (e.g., Grammarly, ChatGPT, and comparable software) were 
used exclusively for grammar correction and formatting support. No scientific content, interpretation, or originality of the 
research was affected by these tools. 

References 

1. Hughes, R.J., et al. Quantum cryptography over underground optical fibers. in Advances in Cryptology—CRYPTO’96: 
16th Annual International Cryptology Conference Santa Barbara, California, USA August 18–22, 1996 Proceedings 16. 
1996. Springer. 

2. Padamvathi, V., B.V. Vardhan, and A. Krishna. Quantum cryptography and quantum key distribution protocols: A 
survey. in 2016 IEEE 6th international conference on advanced computing (IACC). 2016. IEEE. 

3. Shakhmuratov, R., A. Zinnatullin, and F. Vagizov, Cryptography with stochastic photons. Europhysics Letters, 2024. 
147(3): p. 38001. 

4. Ullah, R., et al., Intelligent decision making for energy efficient fog nodes selection and smart switching in the IOT: a 
machine learning approach. PeerJ Computer Science, 2024. 10: p. e1833. 

5. Corner, C., et al., Randomness in cryptography. IEEE Security & Privacy, 2006. 4: p. 64-67. 



168 

6. Ayub, N., et al., Forecasting Multi-Level Deep Learning Autoencoder Architecture (MDLAA) for Parametric Prediction 
based on Convolutional Neural Networks. Engineering, Technology & Applied Science Research, 2025. 15(2): p. 
21279-21283. 

7. Hughes, R.J., et al. Quantum Cryptography. 1995. 

8. Schindler, W., K. Lemke, and C. Paar. A stochastic model for differential side channel cryptanalysis. in Cryptographic 
Hardware and Embedded Systems–CHES 2005: 7th International Workshop, Edinburgh, UK, August 29–September 1, 
2005. Proceedings 7. 2005. Springer. 

9. Brands, S. and R. Gill, Cryptography, statistics and pseudo-randomness (part I). Probability and mathematical 
statistics, 1995. 15: p. 101-114. 

10. Shah, S., et al., A flexible and lightweight signcryption scheme for underwater wireless sensor networks.  Scientific 
Reports, 2025. 15(1): p. 13511. 

11. Sarwar, N., S. Al‐Otaibi, and A. Irshad, Optimizing Breast Cancer Detection: Integrating Few‐Shot and Transfer 
Learning for Enhanced Accuracy and Efficiency. International Journal of Imaging Systems and Technology, 2025. 35(1): 
p. e70033. 

12. Shaked, M. and J.G. Shanthikumar, Stochastic orders and their applications. (No Title), 1994. 

13. COSTA, A.D.Q., A.D.A.B. NETO, and C.A.S. DE ALMEIDA, VII OFICINA NACIONAL DE TEORIA QUÂNTICA DE CAMPOS 
VII NATIONAL WORKSHOP ON QUANTUM FIELD THEORY. 

14. Sarwar, N., et al., Skin lesion segmentation using deep learning algorithm with ant colony optimization. BMC Medical 
Informatics and Decision Making, 2024. 24(1): p. 265. 

15. Gennaro, R., Randomness in cryptography. IEEE security & privacy, 2006. 4(2): p. 64-67. 

16. Bielecki, T.R., J. Jakubowski, and M. Niewȩgłowski, Structured dependence between stochastic processes. Vol. 175. 
2020: Cambridge University Press. 

17. Unnisa, Z., et al., Impact of fine-tuning parameters of convolutional neural network for skin cancer detection. 
Scientific reports, 2025. 15(1): p. 1-23. 

18. Muhammad, A.S., et al., Recent Advances in U-type hexagonal ferrites: Synthesis, Characterizations, Magnetic and 
Absorption Properties. Hybrid Advances, 2024: p. 100324. 

 


