A review of medicinal herbs in the management of male infertility

Madiha Khan Niazi a*, Farooq Hassan b, Muhammad Amjed Ismail c, Muhammad Usama Maooz Awan a, Nimra Naeem a, Talha Noor c a

aUniversity Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
bAssistant Director Standards Development and Dissemination (Tibb), Punjab Healthcare Commission-Lahore, Pakistan
cFaculty of Eastern Medicine, Hamdard University-Karachi, Pakistan

Article Info.

Received: 01-04-2022
Revised: 12-09-2022
Accepted: 02-10-2022
Online: 17-10-2022

Abstract

Male infertility can result from a number of factors, such as neurohormonal imbalances, problems with the reproductive system, and semen quality and quantity degeneration. Male reproductive health is declining globally, and current therapy alternatives to address male infertility are expensive, less widely available, and have prolonged treatment durations and side effects. When it comes to male reproductive health, herbal therapies are in a much better position to provide more holistic approaches. As aphrodisiacs, a unique class of herbs defined in herbal pharmacology, nourish and stimulate the body's sexual tissues. A careful evaluation of the current information on drugs and their probable functions in treating male infertility is the purpose of this paper.

Correspondence:
dr.madihaniazi@gmail.com

Keywords: Male infertility, Semen, Herbs, Spermatogenic, Aphrodisiac

Citation: Niazi MK, Hassan F, Ismail MA, Awan MUM, Naeem N, Noor T. A Review of Medicinal herbs in the management of male infertility. IJNMS. 2022; 1(4):.
Introduction

The inability to get pregnant after a year of sexual activity without the use of contraception is known as infertility [1]. We, as a culture, deal with a variety of infertility-related problems. According to the World Health Organization [2, 3], 40% of infertility issues are related to the male factor and affect 15–10% of couples globally. The ability to generate semen with normal spermatozoa in a sufficient number of individuals (quantity), as well as the desire and capacity for mating, are requirements for males [4]. Some of the causes of male infertility include genetic abnormalities, genital duct obstructions, Varicocele, reduced semen quality parameters, erectile dysfunction, and male impotence are all associated with decreased sperm production [2]. According to research [5], 25 to 40% of young men have sperm parameters that fall below WHO standards. Surgery, prescription drugs, natural remedies, and laboratory techniques are all used as fertility therapies. Numerous studies [6] have found that some herbal treatments can improve some sperm parameters. It is common knowledge that people have been using medicinal plants since the dawn of humanity. A multilateral strategy for using herbal remedies in addition to traditional medical treatment has arisen in recent years [7]. Alternative therapies, such as those that employ herbal plants, are more advantageous than traditional forms of medical and psychological care. Interest in complementary and hormonal therapy has developed as a result of the absence of particular treatments for many fertile men. These therapies are predicated on the hypothesis that some cases of male infertility may be brought on by vitamin or hormone deficiency, and that supplemental therapies (vitamins, herbal remedies, and hormones) may enhance male reproductive capability and semen quality [8]. Studies [3,4] demonstrating that a sizable percentage of infertile men produce appreciable levels of semen oxidants led to the development of antioxidant therapy. Although it is thought that the high amounts of oxidants in their semen are what are causing these men's infertility, the efficacy of treating them with oral antioxidant therapy has not yet been proven. Because lay books praising their benefits are published frequently, alternative medicines are growing in popularity. These lay articles are largely based on poor clinical research (uncontrolled, nonrandomized). Because of this, we think that complementary and alternative medicine is widely used. The goal of this study was to look into the types of alternative and hormonal therapies that male infertility patients used. [9]

Free radical-induced oxidative damage is one of the most frequent causes of idiopathic oligospermia and leads to abnormal sperm despite having an adverse effect on sperm structure. For instance, nitric oxide free radicals, for instance, cause oxidative stress in diabetes by producing reactive oxygen species, which interfere with estrogenic and spermatogenesis pathways and cause testicular insufficiency [10–12]. Varicocele has been found in 19% to 41% of infertile men, making it a frequent cause of male infertility [13–15]. One of the potential causes of decreased spermatogenesis is thought to be increased ROS levels and oxidative stress. Vacuoles are formed in the testis tissue as a result of oxidative stress and are linked to aging [17–19]. This process may be inhibited by antioxidants. A diet lacking in antioxidants, vitamin A, flavonoids, carnitine, folic acid, zinc, and selenium may increase the risk of infertility, especially in persons with oligospermia and asthenozoospermia [21–23]. Antioxidants including vitamin C, vitamin E, coenzyme Q10, glutathione, and natural polyphenols like flavonoids and phenolic acids can be used to treat male infertility because they reduce free radical damage, improve the blood-testis barrier, and protect and repair sperm DNA [24]. Many infertile couples choose not to use assisted reproductive technologies (ART) due to their expensive expense, including zygote intrafallopian transfer (ZIFT), in vitro fertilization (IVF), and intra-cytoplasmic sperm insemination (ICSI). On the other side, there are effective drugs that are more widely available and less expensive. Plant extracts are treasured for their bioactive components, which are valued for being sourced from natural sources and compatible with key systems. For a very long time, herbal medicines have been utilized to improve conditions including hormonal imbalance, oligospermia, low sperm motility, prostatitis, varicocele, and more. Table 2 [25].

Semen parameter values

According to a 2010 World Health Organization report, normal human semen has a volume of 1.5 ml or more, a pH of 7.2 or higher, 15x106 or more spermatozoa per ml, 39x106 or more spermatozoa per ejaculate, and at least 32% motility within 60 minutes. If the male's sperm count is less than 11 million sperm per milliliter of sperm, it is regarded as infertile. The most crucial functional indicator to take into account when evaluating spermatozoa's capacity to fertilize is sperm motility [27].

Sperm morphology:

In sperm morphology, shape and size of sperm cells are analyzed. It is called aberrant sperm morphology if the size, shape, or characteristics of a sperm are not as predicted. As the name suggests, Teratozoospermia refers to malformed sperm. Only identifiable sperm are counted in the sperm analysis exercise.

In the beginning, a sperm was found to be aberrant in the following ways:

Assume that the sperm head is oval and free of any abnormalities. Figure 1.
The neck, mid-piece, and tail should be free of abnormalities, and the acrosomal region (40–70% of the head area) should be clearly defined Table 1.

Causes of male infertility

Other reasons of male infertility include abnormal androgen action, adrenal insufficiency, hyperthyroidism, congenital adrenal hyperplasia, disrupted sperm transport, and systemic disease [28]. Androgen action abnormalities, such as androgen insensitivity syndrome, cause the body to not respond to testosterone, resulting in a female phenotype while having a male genome. Patients with hypothyroidism have low testosterone levels while having high quantities of the hormone, which is more typical in women because the condition is genetic Figure 3 [29].

Pathophysiology:

Infertility and hypogonadism can result from an unbalanced hypothalamic-pituitary-gonadal axis. Despite having high blood levels of LH and FSH, the gonads in primordial hypogonadism are unable to produce enough testosterone or spermatogenesis. Primary hypogonadism is caused by congenital conditions such as cryptorchidism,

Niazi et al.
Klinefelter syndrome, and problems with androgen production. Cirrhosis of the liver, renal failure, drugs, autoimmune disorders, radiation, viral infections, and trauma can all cause inherited liver cancer. They are consequently either damaged or less useful. Sertoli and Leydig cells that are inactive Low GnRH, LH, or FSH can cause the hypothalamic-pituitary system to malfunction, which lowers testosterone levels and impairs spermatogenesis. Figure 4. Lack of GnRH, LH, or FSH, as in Kalman’s, Prader-Willi, or Lawrence-Moon syndromes, or mutations in the GnRH receptor, the beta-subunits of LH, FSH, or kisspeptin/G protein-coupled receptor 54, may be the cause of this or any combination of these. Among them are hyperprolactinemia, hypophytopituitarism, drugs (including the use of steroids and opiates), systemic diseases, tumors, and infections. Figure 2. The American Psychological Association states that prolactinomas are the most common cause of hyperprolactinemia, although it can also be brought on by systemic diseases, dopaminergic antagonists, anomalies of the hypothalamic-pituitary stalk, and other medications. These conditions prevent the testes from receiving their essential stimulation. Without the required inputs, Leydig-and-Sertoli cells cannot exert their actions (GnRH, LH, or FSH). As a result, testosterone levels may decrease, or spermatogenesis may stop.

Conclusion:
Unable to have children is a traumatic experience for millions of couples, and many of them have a personal frustration about it. There is an equal distribution of infertility between men and women. Medicinal plants have been used in many countries to treat male infertility issues, among other methods. Sperm disorders, libido dysfunction and sexual asthma are all treated with these herbs. Our health care system relies heavily on herbalism as a primary treatment option for infertility couples because it's cost-effective and readily available.

References
39. Khan MR, Ahmed D. Protective effects of Digera muricata (L.) Mart. on testis against oxidative stress of carbon tetrachloride in rat. Food and Chemical Toxicology. 2009; H
50. Hassan AM, Abdel-Wahhab MA. Antioxidant effect of parsley and panax ginseng extract standardized with ginsenosides Rg3 against alteration induced in reproductive functions in male mice. Egyptian Journal of Hospital Medicine. 2006. 22:60-72.
Table 1. Normal values of semen parameter

<table>
<thead>
<tr>
<th>Semen Parameter</th>
<th>Reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.2 to 7.8</td>
</tr>
<tr>
<td>Volume</td>
<td>≥ 1.5 ml</td>
</tr>
<tr>
<td>Concentration</td>
<td>≥ 15 X 10^6/ml</td>
</tr>
<tr>
<td>Vitality</td>
<td>≥ 58% live spermatozoa</td>
</tr>
<tr>
<td>Total Motile</td>
<td>≥ 40% (Progressive + Non-Progressive)</td>
</tr>
<tr>
<td>Total spermatozoa per ejaculate</td>
<td>≥ 39X 10^6</td>
</tr>
<tr>
<td>Progressive Motility</td>
<td>≥ 32 % motile</td>
</tr>
<tr>
<td>Normal Spermatozoa</td>
<td>≥ 4%</td>
</tr>
</tbody>
</table>

Table 2. Plant products in the management of male fertility and mode of action.

<table>
<thead>
<tr>
<th>Herbs</th>
<th>Identity</th>
<th>Part used</th>
<th>Mode of action</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withania somnifera</td>
<td>Seeds</td>
<td>Psychiatric illness. Sexual organ dysfunction is a condition in which the sexual organs do not operate properly. The number of sperms has grown. Infertile men had higher testosterone and LH levels and lower FSH and prolactin (PRL) levels.</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Eurycoma longifolia Jack</td>
<td>Roots</td>
<td>Androgen production is stimulated by this substance. By lengthening coitus and boosting copulation frequency, the ethanol extract of this plant improved the male rats' performance and sexual drive.</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Mucuna pruriens</td>
<td>seeds</td>
<td>It boosts spermatogenesis and raises the total weight of the testicles and accessory glands. By boosting mounting frequency, ejaculation latency, and intromission frequency, it can improve sexual behavior in male rats.</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Psidium guineense</td>
<td>Aqueous extract</td>
<td>This supplement improves function of the testes and seminal vesicles.</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td>Herb</td>
<td>Spermatogenesis and sexual drive are aided by this supplement. It does not induce infertility or reluctance in women, but it does help to prevent menopausal symptoms. The levels of estrogen, progesterone, and pregnenolone are all affected by testosterone levels.</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Tribulus terrestris</td>
<td>Alcoholic extract</td>
<td>Heat-treated rats have less and significantly degraded sperm, although GTE can counteract these negative effects by increasing the amount and motility of spermatozoa, particularly after 28 days of therapy.</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Camellia sinensis(tea)</td>
<td>Leaves</td>
<td>The activity of SOD has risen. Peroxidation of lipids is slowed.</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Daucus carota(carrot)</td>
<td>Seeds</td>
<td>Antioxidant qualities help to increase sperm count. Increases the synthesis of testosterone. The rate of spermatogenesis has increased.</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Allium sativum</td>
<td>Extract</td>
<td>The number of empty seminiferous tubules in the testes significantly increased in rats fed a diet containing 10%, 15%, or 30% Allium sativum (AS), while testosterone levels significantly decreased. Male rats fed raw garlic had impaired spermatogenesis and testicular function. Citric acid levels were shown to be inversely correlated with prostate weight in rats given 30 percent garlic.</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Zingiber officinale</td>
<td>Oil</td>
<td>DNA damage is prevented by reducing oxygen radicals. Increases spermatogenesis and testosterone levels without increasing testosterone or sperm counts.</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Rose flowers</td>
<td>Oil</td>
<td>The diameter of the seminiferous tubules, sperm motility, Leydig cell numbers, histological flaws in the testes, and testosterone levels have all improved.</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Capsicum</td>
<td>Capsaicin</td>
<td>When given intraperitoneally, capsaicin suppresses DNA synthesis in the testes of mice. In vitro, CAP can also induce apoptosis in two spermatogonia stem cell lines.</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Cinnamomum</td>
<td>Bark</td>
<td>Increases cauda epididymides and testis weight but not sperm count or motility. Male mice given Cinnamonum extract had heavier testicles, cauda epididymides, and seminal vesicles, suggesting that their hormone levels may have risen. Additionally, the treated animals' sperm count and motility were much higher than those of the control group.</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Part Used</td>
<td>Effect</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------</td>
<td>------------------------------------------------------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Trigonella foenum-graecum</td>
<td>Seeds</td>
<td>Improves histological flaws in the testes. Free radical production is inhibited.</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Flaxseed</td>
<td>Oil</td>
<td>Increases the number of sperms in the cauda epididymal sperm pool and serum LH levels.</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Ginseng</td>
<td>Root</td>
<td>The hardness and circumference of the penile organ are both improved. Patients are more satisfied and erections stay longer. Has a protective effect against chromosomal and sperm abnormalities? A rise in testosterone concentration causes sperm counts and motility to increase.</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Petroselimun crispum</td>
<td>Oil</td>
<td>Superoxide dismutase (SOD) and glutathione reductase (GR) activity are increased.</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Lepidum meyenii</td>
<td>Hypocotyl</td>
<td>Improvements are made in spermatogenesis, sperm quantity and motility, as well as levels of testosterone, LH, and FSH.</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Cucurbita pepo L.</td>
<td>Seed and seed oil</td>
<td>Testis histology and libido are improved.</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Allium cepa</td>
<td></td>
<td>Allows the spermatogenesis cycle to take place. Inhibits the formation of aberrant sperm. The number of sperms, motility, and testosterone levels in the blood are all up.</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Sesamum indicum</td>
<td>Seeds</td>
<td>In the epididymis, sperms are retained. FSH is inhibited, and testosterone levels are increased. Sperm count and motility are improved testicular metrics.</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Apium graveolens</td>
<td>Seeds</td>
<td>Histopathological, it improves sperm count, motility, and healing.</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Artemisia annual</td>
<td>Essential oil</td>
<td>increases the amount of Leydig cells, seminiferous tubule diameter, and spermatogenic cell proliferation.</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Urtica dioica</td>
<td>Hydroalcoholic extract</td>
<td>Seminiferous tubule activity and seminiferous epithelial height are preserved.</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Nigella sativa</td>
<td>Seeds</td>
<td>Fertility and the weight of reproductive organs are increased; however, sperm motility and testosterone levels are not increased.</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Crocus sativus L.</td>
<td>Stigma</td>
<td>Stiffness and tumescence of the Rigiscan, as well as erectile function and sexual functions like orgasm and sexual desire, are all improved.</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Dactylorhiza maculata</td>
<td>Dried root and tubers</td>
<td>Increases sperm count, testosterone, sperm volume, and spermatogenesis, as well as enhancing desire, erection, and spermatogenesis.</td>
<td>60, 61</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Normal spermatozoa
Figure 2. Disorders of semen abnormalities

Disorders of spermatogenesis
Obstruction of the efferent duct
Disorders of sperm motility
Sexual dysfunction
Environmental factors
Accessory gland disorders
Psychological factors

Figure 3. Causes of male infertility

Niazi et al.
Figure 4. Mechanism of sex stimulant herbs: [30]